Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glowing Films Developed by UC San Diego Chemists Reveal Traces of Explosives

27.05.2008
New spray-on films developed by UC San Diego chemists will be the basis of portable devices that can quickly reveal trace amounts of nitrogen-based explosives.

Contaminated fingerprints leave dark shadows on the films, which glow blue under ultraviolet light. One of the films can distinguish between different classes of explosive chemicals, a property that could provide evidence to help solve a crime, or prevent one.

A recent episode of CSI: Miami featured the technology, which linked fingerprints left on a video camera to a bomb used in a bank heist, revealing the motive for the robbery. In real life, the security systems company RedXDefense has developed a portable kit based on the technology that security officers could use with minimal training.

Detection relies on fluorescent polymers developed at UCSD by chemistry and biochemistry professor William Trogler and graduate student Jason Sanchez. “It’s a very intuitive detection method that doesn’t require a scientist to run,” Trogler said.

... more about:
»Class »Polymer

Sanchez and Trogler describe the synthesis and properties of their polymers in a forthcoming issue of the Journal of Materials Chemistry.

The polymers emit blue light when excited by ultraviolet radiation. Nitrogen-based explosive chemicals such as TNT quench that glow by soaking up electrons.

Because the polymers fluoresce brightly, no special instruments are needed to read the results. Only a very thin film sprayed on a suspect surface is needed to reveal the presence of a dangerous chemical. A single layer of the polymer, about one thousandth of a gram, is enough to detect minute amounts of some explosives, as little as a few trillionths of a gram (picograms) on a surface a half-foot in diameter. Handling explosives can leave 1,000 times that quantity or more stuck to fingers or vehicles.

The films also adhere directly to potentially contaminated surfaces, making them more sensitive than previous methods, which rely on capturing molecules that escape into the air.

Detection can be fast, revealing incriminating fingerprints as soon as the solvents dry, within 30 seconds. Exposure to ultraviolet light for an minute or two alters one of the films so that traces a nitrate esters, a class chemicals that includes the highly explosive PTEN, begin to glow green. Traces of other classes of explosives, such as nitroaromatics like TNT, stay dark.

Trogler’s group is currently developing similar systems to detect explosives based on peroxides.

The Air Force Office of Scientific Research and RedXDefense funded the research. Sanchez was supported by the National Science Foundation.

Trogler serves on the strategic advisory board of RedXDefense, which has licensed the technology from UCSD.

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Class Polymer

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>