Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stabilizing cancer-fighting p53 can also shield a metastasis-promoter

26.05.2008
M. D. Anderson research shows protecting p53 from degradation also defends its mutant

Efforts to protect the tumor-suppressor p53 could just as easily shelter a mutant version of the protein, causing cancer cells to thrive and spread rather than die, according to research by scientists at The University of Texas M. D. Anderson Cancer Center reported in the current issue of the journal Genes and Development.

"As we develop therapies to restore the function of p53, we need to make sure we first know what version of this gene is present in a patient's tumor and then decide how to treat it," said senior author Guillermina Lozano, Ph.D., professor and chair of M. D. Anderson's Department of Cancer Genetics.

The research shows that attempting to restore normal expression of p53 protein by blocking another protein that normally degrades p53 can have the perverse effect of protecting mutated p53 and promoting metastasis.

... more about:
»MDM2 »Mutant »Mutation »degrade »p53

The p53 gene is inactivated in many types of cancer. Its normal role is to halt the division of a defective cell and then force the cell to kill itself or deprive the cell of its ability to reproduce. As such, reactivation of p53 is thought to have great therapeutic potential.

Normally, p53 levels are low, but it springs into action in response to DNA damage or activation of cancer-promoting genes, or oncogenes.

Lozano, an expert on mouse models of human cancer, and colleagues developed mice with a specific mutation of p53 that mimics a common genetic mutation in human cancers. The mutated gene, called p53H, expresses a defective version of the p53 protein.

When mice had the p53H mutation on both genes (p53 H/H), the researchers found that the p53 protein was not detectable in normal tissue but was present in 79 percent of tumors. However, tumors in these mice did not metastasize.

Enter Mdm2, a protein whose normal job is to degrade p53 when it's no longer needed. Mdm2 also degrades the mutated version of the p53 protein.

The researchers developed p53 mutant mice that lacked one or both copies of Mdm2. Mice with the double-mutant p53 that also had no Mdm2 died sooner and developed more aggressive metastatic tumors than mice with only the p53 mutation.

The frequency of metastasis went from zero in the p53 H/H with normal Mdm2, to 9 percent in mice lacking one copy of Mdm2 to 17 percent in mice with no Mdm2. Metastasis - the invasive spread of cancer to other organs - causes 90 percent of all human cancer deaths.

Absence of a second tumor-suppressing gene, p16, also promotes stability of mutant p53.

"The importance of this study cannot be overemphasized," the researchers concluded. Drugs that try to protect normal p53 by inhibiting the p53-degrading protein Mdm2 also would protect mutant p53 "with dire consequences."

By the same token, chemotherapy that seeks to stabilize p53 could also stabilize the mutant version. Detecting the type of p53 present in a tumor is possible with current lab technology, Lozano said.

The study raises the possibility of suppressing cancer metastasis by eliminating mutant p53 stability, which the researchers note is more feasible than converting mutant p53 to the normal type.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

Further reports about: MDM2 Mutant Mutation degrade p53

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>