Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stabilizing cancer-fighting p53 can also shield a metastasis-promoter

26.05.2008
M. D. Anderson research shows protecting p53 from degradation also defends its mutant

Efforts to protect the tumor-suppressor p53 could just as easily shelter a mutant version of the protein, causing cancer cells to thrive and spread rather than die, according to research by scientists at The University of Texas M. D. Anderson Cancer Center reported in the current issue of the journal Genes and Development.

"As we develop therapies to restore the function of p53, we need to make sure we first know what version of this gene is present in a patient's tumor and then decide how to treat it," said senior author Guillermina Lozano, Ph.D., professor and chair of M. D. Anderson's Department of Cancer Genetics.

The research shows that attempting to restore normal expression of p53 protein by blocking another protein that normally degrades p53 can have the perverse effect of protecting mutated p53 and promoting metastasis.

... more about:
»MDM2 »Mutant »Mutation »degrade »p53

The p53 gene is inactivated in many types of cancer. Its normal role is to halt the division of a defective cell and then force the cell to kill itself or deprive the cell of its ability to reproduce. As such, reactivation of p53 is thought to have great therapeutic potential.

Normally, p53 levels are low, but it springs into action in response to DNA damage or activation of cancer-promoting genes, or oncogenes.

Lozano, an expert on mouse models of human cancer, and colleagues developed mice with a specific mutation of p53 that mimics a common genetic mutation in human cancers. The mutated gene, called p53H, expresses a defective version of the p53 protein.

When mice had the p53H mutation on both genes (p53 H/H), the researchers found that the p53 protein was not detectable in normal tissue but was present in 79 percent of tumors. However, tumors in these mice did not metastasize.

Enter Mdm2, a protein whose normal job is to degrade p53 when it's no longer needed. Mdm2 also degrades the mutated version of the p53 protein.

The researchers developed p53 mutant mice that lacked one or both copies of Mdm2. Mice with the double-mutant p53 that also had no Mdm2 died sooner and developed more aggressive metastatic tumors than mice with only the p53 mutation.

The frequency of metastasis went from zero in the p53 H/H with normal Mdm2, to 9 percent in mice lacking one copy of Mdm2 to 17 percent in mice with no Mdm2. Metastasis - the invasive spread of cancer to other organs - causes 90 percent of all human cancer deaths.

Absence of a second tumor-suppressing gene, p16, also promotes stability of mutant p53.

"The importance of this study cannot be overemphasized," the researchers concluded. Drugs that try to protect normal p53 by inhibiting the p53-degrading protein Mdm2 also would protect mutant p53 "with dire consequences."

By the same token, chemotherapy that seeks to stabilize p53 could also stabilize the mutant version. Detecting the type of p53 present in a tumor is possible with current lab technology, Lozano said.

The study raises the possibility of suppressing cancer metastasis by eliminating mutant p53 stability, which the researchers note is more feasible than converting mutant p53 to the normal type.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

Further reports about: MDM2 Mutant Mutation degrade p53

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>