Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stabilizing cancer-fighting p53 can also shield a metastasis-promoter

26.05.2008
M. D. Anderson research shows protecting p53 from degradation also defends its mutant

Efforts to protect the tumor-suppressor p53 could just as easily shelter a mutant version of the protein, causing cancer cells to thrive and spread rather than die, according to research by scientists at The University of Texas M. D. Anderson Cancer Center reported in the current issue of the journal Genes and Development.

"As we develop therapies to restore the function of p53, we need to make sure we first know what version of this gene is present in a patient's tumor and then decide how to treat it," said senior author Guillermina Lozano, Ph.D., professor and chair of M. D. Anderson's Department of Cancer Genetics.

The research shows that attempting to restore normal expression of p53 protein by blocking another protein that normally degrades p53 can have the perverse effect of protecting mutated p53 and promoting metastasis.

... more about:
»MDM2 »Mutant »Mutation »degrade »p53

The p53 gene is inactivated in many types of cancer. Its normal role is to halt the division of a defective cell and then force the cell to kill itself or deprive the cell of its ability to reproduce. As such, reactivation of p53 is thought to have great therapeutic potential.

Normally, p53 levels are low, but it springs into action in response to DNA damage or activation of cancer-promoting genes, or oncogenes.

Lozano, an expert on mouse models of human cancer, and colleagues developed mice with a specific mutation of p53 that mimics a common genetic mutation in human cancers. The mutated gene, called p53H, expresses a defective version of the p53 protein.

When mice had the p53H mutation on both genes (p53 H/H), the researchers found that the p53 protein was not detectable in normal tissue but was present in 79 percent of tumors. However, tumors in these mice did not metastasize.

Enter Mdm2, a protein whose normal job is to degrade p53 when it's no longer needed. Mdm2 also degrades the mutated version of the p53 protein.

The researchers developed p53 mutant mice that lacked one or both copies of Mdm2. Mice with the double-mutant p53 that also had no Mdm2 died sooner and developed more aggressive metastatic tumors than mice with only the p53 mutation.

The frequency of metastasis went from zero in the p53 H/H with normal Mdm2, to 9 percent in mice lacking one copy of Mdm2 to 17 percent in mice with no Mdm2. Metastasis - the invasive spread of cancer to other organs - causes 90 percent of all human cancer deaths.

Absence of a second tumor-suppressing gene, p16, also promotes stability of mutant p53.

"The importance of this study cannot be overemphasized," the researchers concluded. Drugs that try to protect normal p53 by inhibiting the p53-degrading protein Mdm2 also would protect mutant p53 "with dire consequences."

By the same token, chemotherapy that seeks to stabilize p53 could also stabilize the mutant version. Detecting the type of p53 present in a tumor is possible with current lab technology, Lozano said.

The study raises the possibility of suppressing cancer metastasis by eliminating mutant p53 stability, which the researchers note is more feasible than converting mutant p53 to the normal type.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

Further reports about: MDM2 Mutant Mutation degrade p53

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>