Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cheaper method for mapping disease genes

26.05.2008
Scientists at the Swedish medical university Karolinska Institutet have developed a new DNA-sequencing method that is much cheaper than those currently in use in laboratories.

They hope that this new method will make it possible to map disease genes in large patient groups, which in turn can mean quicker breakthroughs for new treatments for a wide variety of diseases.

By mapping DNA, scientists can trace disease genes, understand how bacteria and viruses cause infection and chart the evolution of mankind and other species. When the HUGO project mapped the first human genome not so long ago, it cost over a billion kronor and took over ten years. Today, there are instruments on the market that can do the same thing in a matter of months for less then ten million kronor. However, if scientists are to have opportunities to study disease genes in detail, and from hundreds of patients, the process must be much, much cheaper.

A Swedish team, led by Sten Linnarsson at the Department of Medical Biochemistry and Biophysics at Karolinska Institutet, has now developed a new DNA-sequencing method that can one day make it possible to map out the human genome for one-tenth of today’s cost. The method is presented in the online edition of the scientific journal Nature Biotechnology.

... more about:
»DNA »Disease »genes »method »sequences

The scientists took DNA from the enteric bacteria E. coli and split it into tiny fragments, each with a length of approximately 200 nucleotides (the building blocks of DNA: A, C, G and T). These fragments were then spread out and fixed onto a microscope slide so that several million fragments could be analysed simultaneously. These fragments were then rinsed in a fluid containing short DNA sequences of five nucleotides, marked with a fluorescent dye, which allowed them to examine which of the short DNA sequences adhered to each fragment.

After having rinsed all possible short DNA sequences over several million fragments, the scientists were able to then digitally piece together the sequences into one complete chain of the entire bacteria genome, a total of 4.5 million nucleotides long.

“Everything takes place in our own specially built instrument, which comprises a microscope powerful enough to take pictures of DNA fragments, an automated pipette and a small flow chamber with a glass surface on which the reaction itself occurs,” says Sten Linnarsson.

This is not the first time that Swedish scientists have successfully developed new methods of DNA sequencing. Ten years ago Pål Nyrén and his colleagues from the Royal Institute of Technology published Pyrosequencing, one of the most common methods of mapping DNA in use today.

Katarina Sternudd | alfa
Further information:
http://ki.se/ki/jsp/polopoly.jsp?l=en&d=130&a=57018&newsdep=130

Further reports about: DNA Disease genes method sequences

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>