Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do astronauts suffer from space sickness?

23.05.2008
Centrifuging astronauts for a lengthy period provided researcher Suzanne Nooij with better insight into how space sickness develops, the nausea and disorientation experienced by many astronauts. Nooij defended her PhD theses on this subject at Delft University of Technology (TU Delft, The Netherlands) on Tuesday 20 May.

Gravity plays a major role in our spatial orientation. Changes in gravitational forces, such as the transition to weightlessness during a space voyage, influence our spatial orientation and require adaptation by many of the physiological processes in which our balance system plays a part. As long as this adaptation is incomplete, this can be coupled to motion sickness (nausea), visual illusions and disorientation.

This 'space sickness' or Space Adaptation Syndrome (SAS), is experienced by about half of all astronauts during the first few days of their space voyage. Wubbo Ockels, the first Dutchman in space in 1986, also suffered from these symptoms. In his capacity as TU Delft professor, Ockels was PhD supervisor for Suzanne Nooij's research.

Rotation
Interestingly, SAS symptoms can even be experienced after lengthy exposure to high gravitational forces in a human centrifuge, as is used for instance for testing and training fighter pilots. To experience this, people have to spend longer than an hour in a centrifuge and be subjected to gravitational forces of three times higher than that on Earth. The rotation is in itself not unpleasant, but after leaving the centrifuge about half of the test subjects experience the same symptoms as caused by space sickness. It also turns out that astronauts who suffer from space sickness during space flights also experience these symptoms following lengthy rotation on Earth. This means that these symptoms are not caused by weightlessness as such, but more generally by adaptation to a different gravitational force.

Suzanne Nooij has studied these effects closely using the human centrifuge at the Centre for Man and Aviation in Soesterberg. Her results confirm the theory that both types of nausea (space sickness and after rotation) are caused by the same mechanism and also provide better insight into why the symptoms arise.

Otoliths
Logically, Nooij focused her research on the organ of balance. This is located in the inner ear and comprises semi-circular canals, which are sensitive to rotation, and otoliths, which are sensitive to linear acceleration. It has previously been suggested that a difference between the functioning of the left and right otolith contributes to susceptibility to sickness among astronauts. If this is the case, this should also apply after lengthy rotation.

Nooij tested this otolith asymmetry hypothesis. The otolith and semi-circular canals functions on both sides were measured of fifteen test subjects known to be susceptible to space sickness. Those who suffered from space sickness following rotation proved to have high otolith asymmetry and more sensitive otolith and canal systems.

These people could not be classified as sensitive or non-sensitive on the basis of this asymmetry alone, but could on the basis of a combination of various otolith and canal features. This demonstrates that the entire organ of balance is involved in space sickness and that it probably entails complex interactions between the various parts of the organ of balance.

Roy Meijer | alfa
Further information:
http://www.tudelft.nl/live/pagina.jsp?id=4b5a9d8e-7e2c-4659-a3a4-4d27124b4ca4&lang=en

Further reports about: Nooij Rotation canal centrifuge gravitational lengthy otolith sensitive sickness suffer

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>