Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abnormal 'editing' of gene messages may be a cause of lupus

21.05.2008
Researchers at Wake Forest University have uncovered evidence that the abnormal “editing” of gene messages in a type of white blood cell may be behind the development of lupus. Scientists hope the finding will lead to earlier diagnosis, a way to monitor patients’ response to therapy and possibly a new way to treat the disease.

The findings, reported online in the journal Immunology, involve an enzyme that “edits” and modifies the messages of genes before the protein-making process. It is protein molecules that carry out the instructions of our genes and determine how an organism looks, how well its body metabolizes food or fights infection, and even how it behaves.

Dama Laxminarayana, Ph.D., assistant professor of internal medicine and senior author, said that in systemic lupus erythematosus, the normal editing process goes awry, causing a shift in the balance of proteins that results in impaired functions in T cells, a type of white blood cell involved in the regulation of immune functions.

Impaired T cell function is a hallmark of lupus, a complex chronic autoimmune disorder that can range from a benign skin disorder to severe, life-threatening multisystem disease. It primarily affects women in the child-bearing years and is more common in blacks.

... more about:
»150-kDa »ADAR1 »Laxminarayana »Lupus »cause »enzyme »involved

The current research, which involved 13 patients with lupus and eight healthy participants, was based on Laxminarayana’s earlier findings that 150-kDa ADAR1, one of the three enzymes involved in editing gene messages, is higher in the T cells of lupus patients compared to those without lupus. ADARs are ademosine deaminases that act on RNA.

Laxminarayana made the initial finding about 150-kDa ADAR1 levels in 2002 and has been working to solve the mystery of how it is related to the development of lupus. In the current study, Laxminarayana found that the higher levels of 150-kDa ADAR1 alters the editing induced by two other ADAR enzymes and may cause an imbalance of proteins. Editing by the two other ADAR enzymes is a normal cellular process; it is 150-kDa ADAR1 that causes normal editing to go awry.

The process is complicated and took Laxminarayana years to uncover. The current studies demonstrate that, essentially, too much 150-kDa ADAR1 results in an increase in the gene message of Phosphodiesterase 8A1 (PDE8A1), which is involved in the disruption of normal cell signaling and impairing cell function.

“150-kDa ADAR1 is the culprit,” Laxminarayana said. “We are now working to find a safe way to block it.”

In addition to targeting the enzyme as a treatment strategy, Laxminarayana said 150-kDa ADAR1 could also be used as a biomarker to detect the disease earlier, to monitor how patients respond to therapy, and to measure disease intensity.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

Further reports about: 150-kDa ADAR1 Laxminarayana Lupus cause enzyme involved

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>