Will lung cancer recur? A genetic test may provide the answer

“Non-small cell lung cancer, which accounts for about 80 percent of all lung cancers, has a high rate of recurrence even when treated early,” said lead researcher William Bulman, M.D. “If we knew specifically in which patients the cancer was likely to come back, we could recommend more aggressive therapy to those patients.” Dr. Bulman noted that genetic signatures for breast cancer are already commercially available and are used by physicians to guide treatment recommendations.

Dr. Bulman and his colleagues, Drs. Charles Powell and Alain Borczuk, tested five survival gene signatures in 21 patients, with squamous or adenocarinoma tumors who were followed for up to two years after their surgery. The accuracy of the tested signatures ranged from 40 to 80 percent and varied with the type of tumor. A 42-gene signature, for instance, was 82 percent accurate in predicting survival with lung adenocarcinoma, but only 70 percent accurate in predicting survival with squamous cell carcinoma.

“Lung cancer is a heterogeneous disease, and information captured in these tests helps to distinguish tumors in terms of clinical outcomes.” explained Dr. Bulman. “Our findings not only indicate that genetic signatures have clinical utility in personalizing the treatment of lung cancer, but also that it may be necessary to use different gene-based risk predictors with different tumor subtypes.”

Dr. Bulman noted that this research is part of a larger effort to understand the biological basis for why some early stage lung cancers progress and metastasize and why some do not. He added that he and his colleagues are planning to test these genetic signatures in new cohorts of patients for the purposes of targeting patients at high risk for recurrence.

Media Contact

Keely Savoie EurekAlert!

More Information:

http://www.thoracic.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors