Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic 'tag team' keeps cells on cycle

09.05.2008
By surveying the activity of thousands of genes at several different time points, researchers at the Duke Institute for Genome Sciences & Policy have uncovered new evidence that a network of influential genes act as a kind of genetic tag team to orchestrate one of the most fundamental aspects of all life: the cell cycle.

“A cell doesn’t want to divide before it is finished copying its DNA or it will end up with broken chromosomes,” a failure with potentially devastating consequences, said Steven Haase, an assistant professor of biology at Duke and member of the IGSP.

He added that although the new insights into the cell cycle were made in single-celled yeast, they may well apply to human cells. “Essentially everything that works in yeast has its functional analog in mammalian cells,” Haase said.

He and his colleagues at the IGSP’s Center for Systems Biology reported their findings in an advanced online publication of the journal Nature on May 7, 2008. The work was supported by the American Cancer Society, the Alfred P. Sloan Foundation, the National Science Foundation and the National Institutes of Health.

... more about:
»Cycle »activity »factor »transcription »yeast

Scientists thought they had already identified all of the major players in keeping cells on track. Earlier studies of small numbers of genes indicated that the carefully timed program of cell growth and division was governed by a handful of genes aptly known as cyclins, along with their partners, the CDKs. (The scientists who first identified these genes received a Nobel Prize for their discovery in 2001).

To see how significant a role cyclins actually have, the Duke team took a look at the bigger picture --an ability only recently made possible by advances in genome technologies, Haase noted.

“It’s a new way of thinking,” he said. “We’ve spent decades on a reductionist approach to science” -- in which researchers typically knock out one or two genes to see what they do. “That method has been phenomenally successful. But now, with genome technologies, we have the opportunity to look at the dynamics of all the genes at the same time.”

In this case, they evaluated the activity of about 6,000 genes over time in mutant yeast cells that lacked functional cyclins.

Under the old models, the parade of gene activity should have come to an abrupt halt without cyclin. Instead, while the yeast cells outwardly showed signs of the disruption and stopped dividing, nearly 70 percent of the periodic genes within them continued to turn on and off right on schedule.

The result doesn’t mean that cyclins aren’t important, Haase said, but there is certainly more to the story.

Haase’s team now thinks that many cell cycle activities are driven by a series of transcription factors (genes that switch other genes on and off), acting one after another. Transcription factor one turns on the genes under its control along with transcription factor two; transcription factor two turns on its set of genes plus transcription factor three, and so on. The last transcription factors in the series then go back to turn on the first, starting the whole cycle over again.

Mathematical models constructed by the team showed that the waves of activity driven by such a network could provide a “very robust oscillator” even without cyclins, Haase said.

In fact, cyclins themselves are among the genes targeted by this transcription-activating tag team. Those cyclins are also known to influence the behavior of the transcription factors in the network. Therefore, Haase suggests that precise control over the cell cycle is ultimately achieved through the joint effort of the transcription factor network and cyclins. In other words, the two keep each other in line, which explains how cell division usually manages to persevere over a wide range of conditions.

“When the cell cycle fails, one of the most devastating outcomes is cancer,” he said. “Obviously, if this layer of control functions in mammalian cells, we’d like to know about it.”

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Cycle activity factor transcription yeast

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>