Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic 'tag team' keeps cells on cycle

09.05.2008
By surveying the activity of thousands of genes at several different time points, researchers at the Duke Institute for Genome Sciences & Policy have uncovered new evidence that a network of influential genes act as a kind of genetic tag team to orchestrate one of the most fundamental aspects of all life: the cell cycle.

“A cell doesn’t want to divide before it is finished copying its DNA or it will end up with broken chromosomes,” a failure with potentially devastating consequences, said Steven Haase, an assistant professor of biology at Duke and member of the IGSP.

He added that although the new insights into the cell cycle were made in single-celled yeast, they may well apply to human cells. “Essentially everything that works in yeast has its functional analog in mammalian cells,” Haase said.

He and his colleagues at the IGSP’s Center for Systems Biology reported their findings in an advanced online publication of the journal Nature on May 7, 2008. The work was supported by the American Cancer Society, the Alfred P. Sloan Foundation, the National Science Foundation and the National Institutes of Health.

... more about:
»Cycle »activity »factor »transcription »yeast

Scientists thought they had already identified all of the major players in keeping cells on track. Earlier studies of small numbers of genes indicated that the carefully timed program of cell growth and division was governed by a handful of genes aptly known as cyclins, along with their partners, the CDKs. (The scientists who first identified these genes received a Nobel Prize for their discovery in 2001).

To see how significant a role cyclins actually have, the Duke team took a look at the bigger picture --an ability only recently made possible by advances in genome technologies, Haase noted.

“It’s a new way of thinking,” he said. “We’ve spent decades on a reductionist approach to science” -- in which researchers typically knock out one or two genes to see what they do. “That method has been phenomenally successful. But now, with genome technologies, we have the opportunity to look at the dynamics of all the genes at the same time.”

In this case, they evaluated the activity of about 6,000 genes over time in mutant yeast cells that lacked functional cyclins.

Under the old models, the parade of gene activity should have come to an abrupt halt without cyclin. Instead, while the yeast cells outwardly showed signs of the disruption and stopped dividing, nearly 70 percent of the periodic genes within them continued to turn on and off right on schedule.

The result doesn’t mean that cyclins aren’t important, Haase said, but there is certainly more to the story.

Haase’s team now thinks that many cell cycle activities are driven by a series of transcription factors (genes that switch other genes on and off), acting one after another. Transcription factor one turns on the genes under its control along with transcription factor two; transcription factor two turns on its set of genes plus transcription factor three, and so on. The last transcription factors in the series then go back to turn on the first, starting the whole cycle over again.

Mathematical models constructed by the team showed that the waves of activity driven by such a network could provide a “very robust oscillator” even without cyclins, Haase said.

In fact, cyclins themselves are among the genes targeted by this transcription-activating tag team. Those cyclins are also known to influence the behavior of the transcription factors in the network. Therefore, Haase suggests that precise control over the cell cycle is ultimately achieved through the joint effort of the transcription factor network and cyclins. In other words, the two keep each other in line, which explains how cell division usually manages to persevere over a wide range of conditions.

“When the cell cycle fails, one of the most devastating outcomes is cancer,” he said. “Obviously, if this layer of control functions in mammalian cells, we’d like to know about it.”

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Cycle activity factor transcription yeast

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>