Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MicroRNAs in plants


Researchers at MIT and Rice University have discovered that microRNAs, an emerging class of non-protein gene regulators thus far only identified in animals, also exist in plants. By extending the known phylogenetic range of miRNAs to plants, this work points to an ancient evolutionary origin for microRNAs. The report is published in the July 1 issue of the scientific journal Genes & Development.

MicroRNAs (miRNAs) compose a class of short, noncoding RNAs, 20-24-nucleotides in length, that have been found in eukaryotic organisms ranging from roundworms, to fruit flies, to humans. The founding members of this class of RNAs are lin-4 and let-7, two small RNAs that are processed from a longer stem-loop structure by the Dicer enzyme, and function to control developmental timing in the roundworm C. elegans. Over 150 other miRNAs have since been found in animals.

Dr. David Bartel and colleagues have discovered that miRNAs are also present in plants, where they, like their animal counterparts, may also regulate gene expression during development.

Dr. Bartel and colleagues have identified 16 novel miRNAs in the model plant, Arabidopsis, which share sequence and structural similarities to animal miRNAs. The researchers demonstrate that plant miRNAs are processed by a plant homologue of the Dicer enzyme, CARPEL FACTORY (CAF), suggesting that animal and plant miRNAs share a common processing mechanism, and that the previously described role of CAF in plant development may, in fact, be mediated by miRNAs.

As Dr. Bartel describes, "The discovery that microRNAs are present in plants as well as animals shows that this class of noncoding RNAs arose early in eukaryotic evolution and suggests that microRNAs have been shaping gene expression since the emergence of multicellular life."

Heather Cosel | EurekAlert!

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>