Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Break it down: genome sequence of Podospora anserina reveals unsuspected ability to use complex carbon sources

06.05.2008
The model fungus Podospora anserina (P. anserina) has undergone substantial evolution since its separation from Neurospora crassa, as revealed from the Podospora draft genome sequence published in BioMed Central’s open access journal, Genome Biology.

The study also shows that the Podospora genome contains a large, highly specialised set of genes potentially involved in the breakdown of complex carbon sources, which may have potential use in biotechnology applications.

P. anserina is a dung-inhabiting, saprophytic fungus used to study areas of eukaryotic and fungal biology, including ageing and sexual development. Eric Espagne, Olivier Lespinet and Fabienne Malagnac from the Institute of Genetics and Microbiology in Paris and a team of researchers from France and The Netherlands used a whole genome shotgun and assembly approach to produce a 10X draft sequence of the fungus.

The researchers found evidence that P. anserina has undergone dynamic evolution since it diverged from its close relative N. crassa. They found evidence of extensive gene loss and gene shuffling, as well as substantial gene duplication. In addition, the transcription machinery of P. anserina produced a large number of RNAs that could potentially have regulatory roles. Further investigation of these non-conventional transcripts is required and could lead to the discovery of novel regulatory mechanisms, specifically during mycelium growth or accompanying the differentiation of the multicellular fructification produced during sexual reproduction.

... more about:
»Carbon »Genome »Podospora »anserina »fungus »sequence

The research team also discovered that P. anserina contains a large array of genes that may allow the fungus to use the natural carbon sources found wherever it grows. For example, the fungus carries genes potentially involved in the breakdown of the plant polymers cellulose and lignin, which may have future applications in biotechnology.

Espagne concludes: “As for other saprophytic fungi, the P. anserina genome sequence has opened new avenues in the comprehensive study of a variety of biological processes … It also demonstrates how P. anserina is well adapted at the genome level to its natural environment, which was confirmed by the analysis of growth profiles. This result emphasizes the necessity to study several less well-tracked organisms in addition to those well known in the scientific community, as these may yield unexpected new insights into biological phenomena of general interest.”

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/

Further reports about: Carbon Genome Podospora anserina fungus sequence

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>