Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a novel mechanism for the development of colon cancer

06.05.2008
Recent work from the Finnish Academy Center of Excellence on Cancer Biology at the University of Helsinki, Finland, has shed light on the mechanisms of colon tumor development and may help to design better treatment for this disease.

Colon cancer is one of the most common malignancies in Western countries: both men and women face a lifetime risk of nearly 6% for the development of invasive colorectal cancer. Epidemiologic studies have shown that several factors contribute to the development of this disease, such as high fat, red-meat diet, obesity and lack of vegetables and fibre in the diet.

In the great majority of cases, colorectal cancer arises from an initially benign overgrowth of colonic lining, a so-called adenomatous polyp (Fig. 1), which acquires with time harmful mutations and transforms into a dangerous colonic carcinoma. Observational studies suggest that the adenoma-to-carcinoma sequence takes up to 10 years. Although nearly half of Western population may harbor adenomatous polyps by the age of 50, it is estimated that only a few percent of adenomas will progress to cancer.

The study published as an advance online publication of Cancer Cell, describe a mechanism by which harmless colon polyps acquire the ability to form malignant tumors. Researchers from the University of Helsinki discovered that PROX1, a protein that in embryos controls formation of normal organs, such as liver or eye, becomes abnormally overproduced at early stages of carcinoma development. PROX1 allows tumor cells to grow even in the absence of stimulating signals from surrounding normal tissues, which leads to dangerous overgrowth and development of advanced tumors. Removal of PROX1 from cancer cells reverses their malignant behaviour, suggesting that PROX1 is a promising target for the development of future therapies for colon cancer.

... more about:
»Cancer »Development »PROX1 »Polyp »colon

The study was led by the Academy of Finland Research Fellow, Dr. Tatiana Petrova and the Academy Professor, Dr. Kari Alitalo, who jointly supervised the work of a graduate student of Helsinki University Antti Nykänen. The research is a result of collaboration between cancer and developmental biologists, pathologists, geneticists and bioinformaticians from Finland, USA, France, UK and Austria.

The research in the laboratories of Dr. Tatiana Petrova and Dr. Kari Alitalo is supported by the Sigrid Jusélius Foundation, the Association for International Cancer Research, the Academy of Finland and Finnish Cancer Organizations.

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

Further reports about: Cancer Development PROX1 Polyp colon

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>