Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon technique accelerates biological image analysis

05.05.2008
Will improve automated high-throughput screening techniques

Researchers in Carnegie Mellon University’s Lane Center for Computational Biology have discovered how to significantly speed up critical steps in an automated method for analyzing cell cultures and other biological specimens.

The new technique, published online in the Journal of Machine Learning Research, promises to enable higher accuracy analysis of the microscopic images produced by today’s high-throughput biological screening methods, such as the ones used in drug discovery, and to help decipher the complex structure of human tissues.

Improved accuracy could reduce the cost and the time necessary for these screening methods, make possible new types of experiments that previously would have required an infeasible amount of resources, and perhaps uncover interesting but subtle anomalies that otherwise would go undetected, the researchers said.

... more about:
»Analysis »Screening »algorithm »propagation

The technique also will be applicable in fields beyond biology because it improves the efficiency of the belief propagation algorithm, a widely used method for drawing conclusions about interconnected networks.

“Current automated screening systems for examining cell cultures look at individual cells and do not fully consider the relationships between neighboring cells,” said Geoffrey Gordon, associate research professor in the School of Computer Science’s Machine Learning Department. “This is in large part because simultaneously examining many cells with existing methods requires impractical amounts of computational time.”

In many cases, computer vision systems have been shown to distinguish patterns that are difficult for humans to detect, he added. However, even automated systems may confuse two similar patterns, and the confusion may be resolvable by considering neighboring cells.

Gordon and his fellow authors, biomedical engineering student Shann-Ching “Sam” Chen and computational biologist Robert F. Murphy, were able to expand their focus from single to multiple cells by increasing the efficiency of the belief propagation algorithm. The algorithm has become a workhorse for researchers because it enables a computer to make inferences about a set of data by drawing on multiple sources of information. In the case of biological specimens, for instance, it can be used to infer which parts of the image are individual cells or to determine whether the distributions of particular proteins within each cell are abnormal.

But as the number of variables increase, the belief propagation algorithm can grow unwieldy and require an impractical amount of computing time to solve these problems.

The belief propagation algorithm assumes that neighbors — whether they are cells, or bits of text — have effects on each other. So the algorithm represents each piece of evidence used to make inferences as a node in an interconnected network, and exchanges messages between nodes. The Carnegie Mellon researchers found shortcuts for generating these messages, which significantly improved the speed of the entire network.

Murphy, director of the Lane Center for Computational Biology, said this technique could improve the performance of belief propagation algorithms in many applications, including text analysis, Web analysis and medical diagnosis. For this paper, the researchers applied their techniques to analysis of protein patterns within HeLa cells. They found the technique speeded analysis by several orders of magnitude.

In high-throughput screening processes used for drug discovery and other research, tens of thousands of wells — each containing tens or hundreds of cells — need to be analyzed each day, Murphy said. Automated analysis of the cellular relationships within so many wells would be impossible without the sort of speedups achieved in the new study, he added.

Byron Spice | EurekAlert!
Further information:
http://jmlr.csail.mit.edu
http://lane.compbio.cmu.edu
http://www.cmu.edu

Further reports about: Analysis Screening algorithm propagation

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>