Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon technique accelerates biological image analysis

05.05.2008
Will improve automated high-throughput screening techniques

Researchers in Carnegie Mellon University’s Lane Center for Computational Biology have discovered how to significantly speed up critical steps in an automated method for analyzing cell cultures and other biological specimens.

The new technique, published online in the Journal of Machine Learning Research, promises to enable higher accuracy analysis of the microscopic images produced by today’s high-throughput biological screening methods, such as the ones used in drug discovery, and to help decipher the complex structure of human tissues.

Improved accuracy could reduce the cost and the time necessary for these screening methods, make possible new types of experiments that previously would have required an infeasible amount of resources, and perhaps uncover interesting but subtle anomalies that otherwise would go undetected, the researchers said.

... more about:
»Analysis »Screening »algorithm »propagation

The technique also will be applicable in fields beyond biology because it improves the efficiency of the belief propagation algorithm, a widely used method for drawing conclusions about interconnected networks.

“Current automated screening systems for examining cell cultures look at individual cells and do not fully consider the relationships between neighboring cells,” said Geoffrey Gordon, associate research professor in the School of Computer Science’s Machine Learning Department. “This is in large part because simultaneously examining many cells with existing methods requires impractical amounts of computational time.”

In many cases, computer vision systems have been shown to distinguish patterns that are difficult for humans to detect, he added. However, even automated systems may confuse two similar patterns, and the confusion may be resolvable by considering neighboring cells.

Gordon and his fellow authors, biomedical engineering student Shann-Ching “Sam” Chen and computational biologist Robert F. Murphy, were able to expand their focus from single to multiple cells by increasing the efficiency of the belief propagation algorithm. The algorithm has become a workhorse for researchers because it enables a computer to make inferences about a set of data by drawing on multiple sources of information. In the case of biological specimens, for instance, it can be used to infer which parts of the image are individual cells or to determine whether the distributions of particular proteins within each cell are abnormal.

But as the number of variables increase, the belief propagation algorithm can grow unwieldy and require an impractical amount of computing time to solve these problems.

The belief propagation algorithm assumes that neighbors — whether they are cells, or bits of text — have effects on each other. So the algorithm represents each piece of evidence used to make inferences as a node in an interconnected network, and exchanges messages between nodes. The Carnegie Mellon researchers found shortcuts for generating these messages, which significantly improved the speed of the entire network.

Murphy, director of the Lane Center for Computational Biology, said this technique could improve the performance of belief propagation algorithms in many applications, including text analysis, Web analysis and medical diagnosis. For this paper, the researchers applied their techniques to analysis of protein patterns within HeLa cells. They found the technique speeded analysis by several orders of magnitude.

In high-throughput screening processes used for drug discovery and other research, tens of thousands of wells — each containing tens or hundreds of cells — need to be analyzed each day, Murphy said. Automated analysis of the cellular relationships within so many wells would be impossible without the sort of speedups achieved in the new study, he added.

Byron Spice | EurekAlert!
Further information:
http://jmlr.csail.mit.edu
http://lane.compbio.cmu.edu
http://www.cmu.edu

Further reports about: Analysis Screening algorithm propagation

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>