Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon technique accelerates biological image analysis

05.05.2008
Will improve automated high-throughput screening techniques

Researchers in Carnegie Mellon University’s Lane Center for Computational Biology have discovered how to significantly speed up critical steps in an automated method for analyzing cell cultures and other biological specimens.

The new technique, published online in the Journal of Machine Learning Research, promises to enable higher accuracy analysis of the microscopic images produced by today’s high-throughput biological screening methods, such as the ones used in drug discovery, and to help decipher the complex structure of human tissues.

Improved accuracy could reduce the cost and the time necessary for these screening methods, make possible new types of experiments that previously would have required an infeasible amount of resources, and perhaps uncover interesting but subtle anomalies that otherwise would go undetected, the researchers said.

... more about:
»Analysis »Screening »algorithm »propagation

The technique also will be applicable in fields beyond biology because it improves the efficiency of the belief propagation algorithm, a widely used method for drawing conclusions about interconnected networks.

“Current automated screening systems for examining cell cultures look at individual cells and do not fully consider the relationships between neighboring cells,” said Geoffrey Gordon, associate research professor in the School of Computer Science’s Machine Learning Department. “This is in large part because simultaneously examining many cells with existing methods requires impractical amounts of computational time.”

In many cases, computer vision systems have been shown to distinguish patterns that are difficult for humans to detect, he added. However, even automated systems may confuse two similar patterns, and the confusion may be resolvable by considering neighboring cells.

Gordon and his fellow authors, biomedical engineering student Shann-Ching “Sam” Chen and computational biologist Robert F. Murphy, were able to expand their focus from single to multiple cells by increasing the efficiency of the belief propagation algorithm. The algorithm has become a workhorse for researchers because it enables a computer to make inferences about a set of data by drawing on multiple sources of information. In the case of biological specimens, for instance, it can be used to infer which parts of the image are individual cells or to determine whether the distributions of particular proteins within each cell are abnormal.

But as the number of variables increase, the belief propagation algorithm can grow unwieldy and require an impractical amount of computing time to solve these problems.

The belief propagation algorithm assumes that neighbors — whether they are cells, or bits of text — have effects on each other. So the algorithm represents each piece of evidence used to make inferences as a node in an interconnected network, and exchanges messages between nodes. The Carnegie Mellon researchers found shortcuts for generating these messages, which significantly improved the speed of the entire network.

Murphy, director of the Lane Center for Computational Biology, said this technique could improve the performance of belief propagation algorithms in many applications, including text analysis, Web analysis and medical diagnosis. For this paper, the researchers applied their techniques to analysis of protein patterns within HeLa cells. They found the technique speeded analysis by several orders of magnitude.

In high-throughput screening processes used for drug discovery and other research, tens of thousands of wells — each containing tens or hundreds of cells — need to be analyzed each day, Murphy said. Automated analysis of the cellular relationships within so many wells would be impossible without the sort of speedups achieved in the new study, he added.

Byron Spice | EurekAlert!
Further information:
http://jmlr.csail.mit.edu
http://lane.compbio.cmu.edu
http://www.cmu.edu

Further reports about: Analysis Screening algorithm propagation

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>