Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Stem Cells For the First Time in the Pituitary

30.04.2008
Their presence in the hormone-secreting gland of mice suggests a means of adapting to stress and life changes
A team of researchers led by scientists at Cold Spring Harbor Laboratory have for the first time identified stem cells that allow the pituitary glands of mice to grow even after birth. They found that, in contrast to most adult stem cells, these cells are distinct from those that fuel the initial growth of this important organ. The results suggest a novel way that the hormone-secreting gland may adapt, even in adolescents and adults, to traumatic stress or to normal life changes like pregnancy.

Seeking Adult Stem Cells
Maturity, in some respects, brings diminished possibilities. As a fertilized egg cell repeatedly divides to grow into a mature animal, most of the resulting cells become ever more specialized. But a small number of cells, known as stem cells, remain uncommitted even as they spawn more specialized progeny. The most versatile stem cells, taken from days-old embryos, are able to form any cell type — but studying them in people is controversial. Even in adults, however, other types of stem cell persist that have a more limited repertoire. Some replace specific cells as they wear out; others help to rebuild damaged tissues. Still other stem cells are suspected by some scientists of starting or maintaining cancers.

In spite of their importance, stem cells are hard to spot among the multitude of cells in complex tissue. Several years ago, neuroscientist Grigori Enikolopov, Ph.D., an associate professor at Cold Spring Harbor Laboratory (CSHL), and his colleagues developed a tool to look for stem cells that give rise to new adult brain cells. Researchers had known that a gene called Nestin was active in these neural stem cells. The CSHL team genetically engineered mice so that the same conditions that activate Nestin in a particular cell also make it glow green under ultraviolet light.

Using these mice gives researchers an important pointer to cells that may be adult stem cells. Almost 100 research teams around the world have now used these special mice to help find adult stem cells in hair follicles, liver, muscle, and other tissues.

Looking at the pituitary
One place where stem cells had been suspected — but never found — is the pituitary gland. This organ, which in people is about the size of a pea, sits at the base of the brain, where it secretes hormones that regulate various processes throughout the body. In mice, the gland develops in the embryo, but then has a second growth spurt. “A few weeks after they are born,” says Dr. Enikolopov, “the pituitary undergoes massive expansion” that suggests a role for adult stem cells.

Anatoli Gleiberman, Ph.D., a researcher in the lab of pituitary expert M. Geoff Rosenfeld at the University of California, San Diego, initiated a collaboration between the two labs to look for pituitary stem cells. The researchers used the Nestin-tracking mice to identify candidate cells in the anterior pituitary, the section of the organ that secretes hormones. They then used other techniques to show that these are true stem cells. “There are six main lineages in the adult pituitary,” says Dr. Enikolopov, “and we can demonstrate that one adult stem cell can generate all six lineages,” with each cell type secreting a different hormone.

A distinct kind of stem cell
These cells differ from most adult stem cells, however. “In most cases that we know,” says Dr. Enikolopov, “cells that become stem cells of the adult have been also contributing to embryonic development and continue to serve as stem cells in the adult.” The research team demonstrated that adult stem cells in the pituitary did not help construct the embryonic organ.

Their research, the scientists suggest, indicates that the adult mouse pituitary includes two similar — but not identical — types of hormone-producing cells: some that grew in the developing embryo, and some that appeared later. They speculate that having two sets of cells may let the organ respond differently to changing body conditions. Dr. Enikolopov notes that hormones strongly influence human neuropsychiatric phenomena, including stress and depression that are his main research focus. “All are mediated through the pituitary,” he said, so changes that happen during the later growth of the gland could have lasting effects.

“Genetic approaches identify adult pituitary stem cells” appears in the April 29, 2008 edition of the Proceedings of the National Academy of Sciences. Along with Dr. Enikolopov, Dr. Michael Geoff Rosenfeld, who is a Howard Hughes Medical Institute Investigator at the University of California at San Diego School of Medicine, is a corresponding author of the paper. The complete citation is as follows: Anatoli S. Gleiberman, Tatyana Michurina, Juan M. Encinas, Jose L. Roig, Peter Krasnov, Francesca Balordi, Gord Fishell, Michael G. Rosenfeld, and Grigori Enikolopov. The paper is available online at http://www.pnas.org/cgi/doi/10.1073/pnas.0801644105.

Cold Spring Harbor Laboratory is a private, nonprofit research and education institution dedicated to exploring molecular biology and genetics in order to advance the understanding and ability to diagnose and treat cancers, neurological diseases and other causes of human suffering.

Jim Bono | EurekAlert!
Further information:
http://www.cshl.edu
http://www.pnas.org/cgi/doi/10.1073/pnas.0801644105

Further reports about: Embryo Enikolopov Organ Stem hormone pituitary

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>