Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epigenetic research uncovers new targets for modification enzymes

29.04.2008
Enzymes regulating genetic expression can be just as important as the genome itself, increasing evidence shows. The expanding field of epigenetics focuses on the multiple influences on DNA and surrounding molecules that determine whether genes are turned on or off during development and disease processes.

A consortium of scientists, led by Albert Jeltsch at Jacobs University, Breman, Germany, Yoichi Shinkai at Kyoto University, Japan, and Xiaodong Cheng at Emory University, has now discovered new non-histone targets for one enzyme previously believed to modify only histones--the group of proteins that creates tightly bundled packages of DNA strands. The research is reported online in the journal Nature Chemical Biology.

These modification enzymes, called protein methyltransferases, add methyl groups to lysine amino acids within the histones and change their influence on gene expression. The newly identified non-histone targets add yet another influence on gene expression in addition to the already-known DNA methylation and histone modifications in the epigenome.

The international research team has found that a histone methyltransferase called G9a adds methyl groups to other proteins in addition to histones and changes the behavior of those proteins. The researchers used a peptide array technology called SPOT to identify the new enzyme targets.

"This discovery broadens our view of methyltransferases and tells us that epigenetic regulation in cells is even more complicated than we thought," says principal investigator Xiaodong Cheng, PhD, professor of biochemistry at Emory University School of Medicine and a Georgia Research Alliance Eminent Scholar.

"We have known for some time that we had a great deal more to discover about methyltransferases. This is an important piece of the puzzle, and additional research will continue to help us unwind the multiple mechanisms involved in epigenetic gene regulation."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

Further reports about: Histone enzyme methyl methyltransferase modification

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>