Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epigenetic research uncovers new targets for modification enzymes

29.04.2008
Enzymes regulating genetic expression can be just as important as the genome itself, increasing evidence shows. The expanding field of epigenetics focuses on the multiple influences on DNA and surrounding molecules that determine whether genes are turned on or off during development and disease processes.

A consortium of scientists, led by Albert Jeltsch at Jacobs University, Breman, Germany, Yoichi Shinkai at Kyoto University, Japan, and Xiaodong Cheng at Emory University, has now discovered new non-histone targets for one enzyme previously believed to modify only histones--the group of proteins that creates tightly bundled packages of DNA strands. The research is reported online in the journal Nature Chemical Biology.

These modification enzymes, called protein methyltransferases, add methyl groups to lysine amino acids within the histones and change their influence on gene expression. The newly identified non-histone targets add yet another influence on gene expression in addition to the already-known DNA methylation and histone modifications in the epigenome.

The international research team has found that a histone methyltransferase called G9a adds methyl groups to other proteins in addition to histones and changes the behavior of those proteins. The researchers used a peptide array technology called SPOT to identify the new enzyme targets.

"This discovery broadens our view of methyltransferases and tells us that epigenetic regulation in cells is even more complicated than we thought," says principal investigator Xiaodong Cheng, PhD, professor of biochemistry at Emory University School of Medicine and a Georgia Research Alliance Eminent Scholar.

"We have known for some time that we had a great deal more to discover about methyltransferases. This is an important piece of the puzzle, and additional research will continue to help us unwind the multiple mechanisms involved in epigenetic gene regulation."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

Further reports about: Histone enzyme methyl methyltransferase modification

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>