Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birds can detect predators using smell

25.04.2008
Many animal species detect and avoid predators by smell, but this ability has never before been studied in birds, since it was traditionally thought that they did not make use of this sense. However, its has now been discovered that birds are not only capable of discerning their enemies through chemical signals, but that they also alter their behaviour depending on the perceived level of risk of predation.

The use of smell to detect chemical signals can be useful for birds in various situations, such as feeding and orientation. However, they can greatly increase their chances of survival if they can tell whether or not the smell they have detected is associated with a predator.

Luisa Amo de Paz, the study’s lead author, explained to SINC that: “Birds can detect the presence of a predator” thanks to their sense of smell. Working as a biologist at the Spanish National Research Council’s (CSIC) Natural History Museum while the study was carried out, Ms. Amo de Paz is currently working for the Netherlands Institute of Ecology (NIOO-KNAW).

The research, published in the latest copy of Functional Ecology, provides the first ever evidence to show that birds are able to distinguish their predators using chemical signals. According to the researchers at the CSIC’s Natural History Museum, this study “opens up a new and promising area of research in understanding numerous aspects of bird behaviour, which have been ignored until now”.

... more about:
»Amo »DETECT »Feeding »PAZ »scent »signals »smell »tit

The sharpness of the sense of smell among certain birds, especially those that raise their young in holes in trees, such as some of the tit species, is essential for determining whether their major predators, weasels or martens, have got into their nests or are approaching, particularly because of the limited visibility inside their nests.

Experiment with blue tits

The researchers carried out an experiment with a population of blue tits that raise their young in nest boxes in Miraflores de la Sierra in the Sierra de Guadarrama mountains, in Madrid province. The researchers placed the scent of mustelids (ferrets) inside the nest boxes when the chicks were eight days old, and “the parents took longer to enter the boxes to feed their chicks, and they approached the boxes more often without going inside,” Ms. Amo de Paz told SINC.

Thanks to the images captured by a video camera located several metres from the nest box, the scientists were able to work out the number of times the chicks were fed, and deduced that the birds did not feed their chicks on fewer occasions, although “they spent less time inside the nest while feeding their babies,” according to the biologist. By spending less time in the nest box, the parents lessened the risk of predator attack while still feeding their chicks.

The biologists added the scent of quail in other nest boxes in order to monitor the effect of a new smell on the blue tits’ behaviour, and water in others to monitor the effect caused by moisture. This demonstrated that when the birds detected an unknown smell, such as that of the quails, they did not wait such a long time before entering their nests, and did not reduce the amount of time spent feeding their chicks.

When the chicks were 13 days old, the scientists topped up the corresponding scent for each nest box, and measured the results again. Ms. Amo de Paz said this was to “see whether the ferret scent had had an effect on the chicks’ physical condition”, given that their parents had spent less time inside the nest. The conclusions show that the chicks’ growth was not affected during the time they were exposed to the supposed predator. The researcher thus concludes that “birds are able to detect the chemical signals of predators and use these to weigh up the risk of predator attack”.

SINC team | alfa
Further information:
http://www.plataformasinc.es

Further reports about: Amo DETECT Feeding PAZ scent signals smell tit

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>