Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why fruit-eating bats eat dirt

25.04.2008
“Don’t eat the green parts of tomatoes, cut the green off the potatoes”. Any child would know that eating these parts of vegetables is a bad idea. The reason behind this is that they contain secondary plant compounds which may have detrimental effects on the consumer.

Each night, tropical fruit-eating bats ingest large amounts of secondary plant compounds with their food. This may become particularly problematic for pregnant or lactating bat mothers, since secondary plant compounds may damage the embryo or the juvenile. Now a scientific study describes for the first time how female fruit-eating bats deal with this situation.

In a study published in the online journal "PLoS ONE", researchers from the Berlin Leibniz Institute for Zoo and Wildlife Research (IZW), Boston University and Cornell University, found evidence that fruit-eating bats take up large amounts of mineral rich water and clay from so-called mineral licks to detoxify the secondary plant compounds they ingest in fruits.

Bats include more than 1200 species, represent the second most species rich mammalian group and are important seed dispersers in tropical rain forests. Dr. Christian Voigt and his colleagues captured pregnant and lactating bats at mineral licks in the Amazonian rainforest of Ecuador. "At first glance it seemed that bats visit these sites for the same purpose as other animals such as large tapirs or birds, i.e. to meet their daily mineral requirements", Voigt describes their initial thoughts when they started the study. Bat mothers have particularly high mineral demands, because their juveniles cannot be weaned before they have reached almost adult size. “To our amazement, we found fruits to be relatively rich in minerals compared to insects“, states Dr. Voigt. In the present study, the researchers focused on one bat species that feeds on both fruits and insects.

... more about:
»compounds »fruit-eating »fruits »secondary

The study demonstrates that although insects and not fruits had a low mineral content insufficient for bat reproduction, only bats with a fruit-dominated diet visited mineral licks. The researchers assume that female bats ingest more fruits than usual during pregnancy and lactation. Therefore, they are directly exposed to the detrimental effects of secondary plant compounds. Female bats seem to be able to compensate the toxicity of secondary plant compounds by consuming mineral rich clay or water. Local people in Africa and South America or Africa are also familiar with the detoxifying qualities of mineral-rich clay and consume it during pregnancy and lactation. It seems as if humans and bats have found a similar solution for a shared problem.

Christine Vollgraf | alfa
Further information:
http://www.izw-berlin.de
http://www.plosone.org/doi/pone.0002011

Further reports about: compounds fruit-eating fruits secondary

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>