Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First-class protein crystals thanks to weightlessness on earth

24.04.2008
Dutch chemist Paul Poodt has developed two attractive alternatives for allowing protein crystals to grow under weightless conditions.

If the crystals are grown upside down in a strong magnetic field, fluid flows that disrupt crystal growth are suppressed. Therefore, high-quality proteins no longer need to be grown in space, but can be grown here on earth.

Protein crystals provide vital knowledge for drug development. The production of an effective drug requires knowledge of how biomolecules such as body proteins are constructed. If you want to know how proteins work, you must first of all determine their molecular structure using X-ray diffraction.

This requires exceptionally high-quality protein crystals. However, allowing these to grow can be extremely difficult and sometimes even impossible: the presence of gravity gives rise to fluid flows in the crystal solution, which, in turn, disrupt the growth process. Undisturbed growth yields the finest crystals.

... more about:
»Earth »Fluid »Protein »weightlessness
Space crystals
In order to prevent fluid flows, the decision is often taken to grow the protein crystals in space on. However, as this is a very expensive and time-consuming undertaking, scientists are looking for methods to create weightlessness on earth. The experiment in Nijmegen is the first in the world to demonstrate that a crystal can grow uniformly in a strong magnetic field.

Paul Poodt (Zevenaar, 1979) studied physical chemistry. His PhD research - supported by the Open Competition of NWO Chemical Sciences - is part of the programme of the Institute for Molecules and Material (IMM) of the Radboud University Nijmegen.

Sonja Knols | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_7DPBTL_Eng

Further reports about: Earth Fluid Protein weightlessness

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>