Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Primary driver of stomach cancer development identified

23.04.2008
Potential new drug targets

In a discovery that could lead to the development of new treatments for gastric cancer, scientists at the Melbourne Branch of the international Ludwig Institute for Cancer Research (LICR) have discovered what appears to be the primary driver of tumor development in the stomach.

Results published today on-line in the Journal of Clinical Investigation show that inhibiting the signaling cascade initiated by the IL-11 protein prevented the development of inflammation, hyperplasia (an abnormal increase in the number of cells) and tumor formation in pre-clinical models of gastric cancer.

Gastric cancer is the second most common cause of cancer-related deaths around the world, and has been shown previously to be correlated with chronic inflammation. Persistent activation of the Stat3 protein, which is known to play roles in inflammation-associated carcinogenesis, is commonly found in gastric and many other types of cancer. Until now, however, the underlying cause of hyperactive Stat3 was unknown. The current study demonstrates that IL-11 promotes chronic inflammation and associated tumorigenesis in the stomach by inducing excessive activation of Stat3. The study used both genetic and pharmacologic inhibitors to show that blocking this signaling pathway prevented or reduced tumorigenesis in a mouse model of inflammation-dependent human gastric cancer.

... more about:
»Development »gastric »stomach

“Although we made this discovery in a mouse model, we expect it to be highly relevant to the clinic because of the striking similarity in gastric tumour development and appearance between mice and men,” says the lead author of the study, Professor Matthias Ernst from the LICR Melbourne Branch. “The clear link between inhibition of IL-11/Stat3 activity and suppression of gastric tumorigenesis that we identified supports the further development of pharmacologic agents that target these molecules for the treatment of gastric and potentially other cancers. We believe that we have a very relevant model in our hand for the preclinical assessment of such compounds as well as for the identification of potential markers that may ultimately help in the early detection of disease.

Sarah L. White | EurekAlert!
Further information:
http://www.licr.org

Further reports about: Development gastric stomach

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>