Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Primary driver of stomach cancer development identified

Potential new drug targets

In a discovery that could lead to the development of new treatments for gastric cancer, scientists at the Melbourne Branch of the international Ludwig Institute for Cancer Research (LICR) have discovered what appears to be the primary driver of tumor development in the stomach.

Results published today on-line in the Journal of Clinical Investigation show that inhibiting the signaling cascade initiated by the IL-11 protein prevented the development of inflammation, hyperplasia (an abnormal increase in the number of cells) and tumor formation in pre-clinical models of gastric cancer.

Gastric cancer is the second most common cause of cancer-related deaths around the world, and has been shown previously to be correlated with chronic inflammation. Persistent activation of the Stat3 protein, which is known to play roles in inflammation-associated carcinogenesis, is commonly found in gastric and many other types of cancer. Until now, however, the underlying cause of hyperactive Stat3 was unknown. The current study demonstrates that IL-11 promotes chronic inflammation and associated tumorigenesis in the stomach by inducing excessive activation of Stat3. The study used both genetic and pharmacologic inhibitors to show that blocking this signaling pathway prevented or reduced tumorigenesis in a mouse model of inflammation-dependent human gastric cancer.

... more about:
»Development »gastric »stomach

“Although we made this discovery in a mouse model, we expect it to be highly relevant to the clinic because of the striking similarity in gastric tumour development and appearance between mice and men,” says the lead author of the study, Professor Matthias Ernst from the LICR Melbourne Branch. “The clear link between inhibition of IL-11/Stat3 activity and suppression of gastric tumorigenesis that we identified supports the further development of pharmacologic agents that target these molecules for the treatment of gastric and potentially other cancers. We believe that we have a very relevant model in our hand for the preclinical assessment of such compounds as well as for the identification of potential markers that may ultimately help in the early detection of disease.

Sarah L. White | EurekAlert!
Further information:

Further reports about: Development gastric stomach

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>