Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers ID new class of photoreceptors, pointing to new ways sights and smells are regulated

23.04.2008
The identification of a new class of photoreceptors in the retina of fruit flies sheds light on the regulation of the pigments of the eye that confer color vision, researchers at New York University’s Center for Developmental Genetics report in a new study appearing in the Public Library of Science’s journal, PloS Biology.

The findings, they write, may also have implications for the regulating of olfactory receptors, which are responsible for the detection of smells, because both types of receptors belong to the same protein family.

Biologists have previously found that most sensory systems follow the “one receptor molecule per receptor cell” rule. For example, photoreceptors in the fly eye and human cones—our color-sensitive photoreceptors—each express only one rhodopsin, a pigment that is sensitive to only one color. Rhodopsins are G-coupled protein receptors, a class of ancient signaling molecules that mediate not just vision, but also the sense of smell and other physiological processes.

In the PloS Biology study, the NYU researchers examined the eye of the fruit fly Drosophila. Fruit flies can be analyzed and manipulated in exquisite details by biologists and serve as a powerful model system to understand biological processes such as vision. In each of the estimated 800 individual facets that make up the fly eye, there are eight photoreceptors (R1–R8). Six of these mediate broad-spectrum detection of motion (R1–R6) and two mediate color vision (R7 and R8) and are similar to the human cone photoreceptors.

... more about:
»Pigment »Rhodopsin »photoreceptor »receptor »smell

The NYU researchers, headed by Biology Professor Claude Desplan, sought to understand the mechanisms that regulate mutual exclusion of rhodopsin photoreceptor genes in the fly retina, which is poorly understood. Their results revealed a new class of photoreceptors that violates the one rhodopsin–one photoreceptor rule. This new class, located in the dorsal third of the eye, co-expresses two ultraviolet (UV)-sensitive rhodopsins (rh3 and rh4) in R7, while maintaining discrimination between green and blue rhodopsins in R8.

The NYU researchers found that this co-expression depends on a group of genes—the so-called Iroquois Complex genes—that are known to specify the dorsal side of the eye. These genes are necessary and sufficient to allow the two UV-sensitive rhodopsins to be expressed in the same R7 cell. The purpose of this co-expression of UV-sensitive pigments in a specialized part of the dorsal retina is likely to allow the flies to better orient to the sun for navigation: Flies, like bees, where this has been well documented, can discriminate between the solar side of the landscape, which has fewer radiations in the UV, and the opposite side (anti-solar), which is very UV-rich.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Pigment Rhodopsin photoreceptor receptor smell

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>