Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers ID new class of photoreceptors, pointing to new ways sights and smells are regulated

23.04.2008
The identification of a new class of photoreceptors in the retina of fruit flies sheds light on the regulation of the pigments of the eye that confer color vision, researchers at New York University’s Center for Developmental Genetics report in a new study appearing in the Public Library of Science’s journal, PloS Biology.

The findings, they write, may also have implications for the regulating of olfactory receptors, which are responsible for the detection of smells, because both types of receptors belong to the same protein family.

Biologists have previously found that most sensory systems follow the “one receptor molecule per receptor cell” rule. For example, photoreceptors in the fly eye and human cones—our color-sensitive photoreceptors—each express only one rhodopsin, a pigment that is sensitive to only one color. Rhodopsins are G-coupled protein receptors, a class of ancient signaling molecules that mediate not just vision, but also the sense of smell and other physiological processes.

In the PloS Biology study, the NYU researchers examined the eye of the fruit fly Drosophila. Fruit flies can be analyzed and manipulated in exquisite details by biologists and serve as a powerful model system to understand biological processes such as vision. In each of the estimated 800 individual facets that make up the fly eye, there are eight photoreceptors (R1–R8). Six of these mediate broad-spectrum detection of motion (R1–R6) and two mediate color vision (R7 and R8) and are similar to the human cone photoreceptors.

... more about:
»Pigment »Rhodopsin »photoreceptor »receptor »smell

The NYU researchers, headed by Biology Professor Claude Desplan, sought to understand the mechanisms that regulate mutual exclusion of rhodopsin photoreceptor genes in the fly retina, which is poorly understood. Their results revealed a new class of photoreceptors that violates the one rhodopsin–one photoreceptor rule. This new class, located in the dorsal third of the eye, co-expresses two ultraviolet (UV)-sensitive rhodopsins (rh3 and rh4) in R7, while maintaining discrimination between green and blue rhodopsins in R8.

The NYU researchers found that this co-expression depends on a group of genes—the so-called Iroquois Complex genes—that are known to specify the dorsal side of the eye. These genes are necessary and sufficient to allow the two UV-sensitive rhodopsins to be expressed in the same R7 cell. The purpose of this co-expression of UV-sensitive pigments in a specialized part of the dorsal retina is likely to allow the flies to better orient to the sun for navigation: Flies, like bees, where this has been well documented, can discriminate between the solar side of the landscape, which has fewer radiations in the UV, and the opposite side (anti-solar), which is very UV-rich.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Pigment Rhodopsin photoreceptor receptor smell

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>