Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers ID new class of photoreceptors, pointing to new ways sights and smells are regulated

23.04.2008
The identification of a new class of photoreceptors in the retina of fruit flies sheds light on the regulation of the pigments of the eye that confer color vision, researchers at New York University’s Center for Developmental Genetics report in a new study appearing in the Public Library of Science’s journal, PloS Biology.

The findings, they write, may also have implications for the regulating of olfactory receptors, which are responsible for the detection of smells, because both types of receptors belong to the same protein family.

Biologists have previously found that most sensory systems follow the “one receptor molecule per receptor cell” rule. For example, photoreceptors in the fly eye and human cones—our color-sensitive photoreceptors—each express only one rhodopsin, a pigment that is sensitive to only one color. Rhodopsins are G-coupled protein receptors, a class of ancient signaling molecules that mediate not just vision, but also the sense of smell and other physiological processes.

In the PloS Biology study, the NYU researchers examined the eye of the fruit fly Drosophila. Fruit flies can be analyzed and manipulated in exquisite details by biologists and serve as a powerful model system to understand biological processes such as vision. In each of the estimated 800 individual facets that make up the fly eye, there are eight photoreceptors (R1–R8). Six of these mediate broad-spectrum detection of motion (R1–R6) and two mediate color vision (R7 and R8) and are similar to the human cone photoreceptors.

... more about:
»Pigment »Rhodopsin »photoreceptor »receptor »smell

The NYU researchers, headed by Biology Professor Claude Desplan, sought to understand the mechanisms that regulate mutual exclusion of rhodopsin photoreceptor genes in the fly retina, which is poorly understood. Their results revealed a new class of photoreceptors that violates the one rhodopsin–one photoreceptor rule. This new class, located in the dorsal third of the eye, co-expresses two ultraviolet (UV)-sensitive rhodopsins (rh3 and rh4) in R7, while maintaining discrimination between green and blue rhodopsins in R8.

The NYU researchers found that this co-expression depends on a group of genes—the so-called Iroquois Complex genes—that are known to specify the dorsal side of the eye. These genes are necessary and sufficient to allow the two UV-sensitive rhodopsins to be expressed in the same R7 cell. The purpose of this co-expression of UV-sensitive pigments in a specialized part of the dorsal retina is likely to allow the flies to better orient to the sun for navigation: Flies, like bees, where this has been well documented, can discriminate between the solar side of the landscape, which has fewer radiations in the UV, and the opposite side (anti-solar), which is very UV-rich.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Pigment Rhodopsin photoreceptor receptor smell

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>