Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Arizona scientist shares in discovery of microbe filaments' power

22.04.2008
Researchers from The University of Arizona and Columbia University have discovered that tiny filaments on bacteria can bundle together and pull with forces far stronger than experts had previously thought possible.

The team of researchers, including Magdalene “Maggie” So, a member of the BIO5 Institute and the department of immunobiology in the UA College of Medicine, studied Type IV pili – or filaments – on the surface of Neisseria gonorrhoeae, the bacterium that causes the infectious disease gonorrhea.

The research results help them understand the role that Type IV pili play in initiating a variety of infectious diseases – including tuberculosis – and how retracting pili allow bacteria to crawl and to exchange genes with each other.

When a bundle of Type IV pili retracts, it pulls with a force in the nanoNewton range, which is 10 times the force of a single retracting filament. The study demonstrates the power and cooperative nature of the nanomotors that cause Type IV pili to retract.

... more about:
»Filament »microbe »pili »pillars »retract »type

“The motor that causes these filaments to pull is one of the strongest nanomotors known in biology,” So said.

In previous studies, the same group of investigators measured single filament retraction forces in the 50 to 100 picoNewton range. This force allows the bacterium to move an object 10,000 times its own body weight. Retraction forces from a bundle are roughly 10 times higher, allowing the bacterium to move objects 100,000 times its body weight.

Pilus retraction forces are an important factor in how N. gonorrhoeae starts an infection. So, who has studied these microbes for more than 20 years, says N. gonorrhoeae communicates with a human cell by pulling on it. These pulling forces perturb the normal circuitry of the cell. As a result, the infected cell is fooled into lowering its defenses against the infecting microbe.

So said that the team of investigators came up with a new method to measure the tremendous forces applied by retracting pili. They allow bacteria to sit on a dense brushwork of tiny elastic pillars. The pili attach to these pillars. When pili retract, they bend the pillars. By measuring how the pillars bend, the investigators calculate the retraction forces.

Deborah Daun | EurekAlert!
Further information:
http://www.arizona.edu

Further reports about: Filament microbe pili pillars retract type

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>