Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slowly-developing primates definitely not dim-witted

18.04.2008
Some primates have evolved big brains because their extra brainpower helps them live and reproduce longer, an advantage that outweighs the demands of extra years of growth and development they spend reaching adulthood, anthropologists from Duke University and the University of Zurich have concluded in a new study.

The four investigators compared key benchmarks in the development of 28 different primate species, ranging from humans living free of modern trappings in South American jungles to lemurs living in wild settings in Madagascar.

"This research focused specifically on the balance between the costs and benefits of growing a large brain," said Nancy Barrickman, a graduate student in Duke's Department of Biological Anthropology and Anatomy, who is first and corresponding author of a report now posted online for a future print edition of the Journal of Human Evolution.

"Growth rates are much slower in large-brained organisms, and that causes a delay in reproduction," Barrickman said. "If individuals wait too long to reach maturity then they run the risk of dying before they've had the chance to reproduce. So there must be some benefit to large brain size at the same time these costs are incurred.

... more about:
»Barrickman »ExtrA »Life »Skill »primate

"Is larger brain size causing life histories to become extended and slowed down? We think so," Barrickman added. "That obviously fits in very well with humans, who take forever to grow up and live a really long time. So we have the opportunity to have lots of offspring over that long period."

Barrickman drew these conclusions working with Carel van Schaik, a Duke adjunct professor on her doctoral studies committee who directs the University of Zurich's Anthropological Institute and Museum. Other coauthors include Duke graduate student Meredith Bastian, and Karin Isler, a collaborator of van Schaik's in Switzerland.

"Our main finding is that brain size is a far better predictor of the duration of immaturity than body size, at least among primates," said van Schaik. "This study is also useful because it allows us to understand why humans develop so slowly and live so long -- we have no other choice!"

Other studies have linked primate brain size to life span and other factors, but those results have been contradictory, according to the new report. Previous studies were "polluted" by mixing data on captive and wild animals, van Schaik said. "Because development and survival are highly responsive to conditions, this variability made it impossible to do clean comparisons."

Their study was supported by the scientific research society Sigma Xi, the American Museum of Natural History and the Ruggles Gates Fund for Biological Anthropology in the United Kingdom.

Barrickman and her colleagues focused on primates living in the wild because "animals tend to grow up faster in captivity," she said. In the case of humans, they studied the Ache, a tropical forest culture in eastern Paraguay.

"Their food is exclusively wild food they forage from the forest," she said of the Ache. "And they don't have other things like modern birth control methods that you'd find in an industrial population like ours. My argument is that we're basically captive primates by comparison."

After analyzing available data on life history benchmarks such as length of pregnancy, years from birth to maturity, pre- and post-natal brain development and lifespan, the researchers found that humans and other big-brained species such as chimpanzees share certain survival traits.

It takes longer to grow a bigger brain, thus leaving immature offspring in need of extra care for longer periods. But larger brains also provide adult caretakers with "more complex foraging techniques, predator avoidance and social skills," the researchers wrote.

Greater skill allows adults to live longer, which in turn gives them longer reproductive lives. Humans have added to this adaptive advantage by using their cognitive and social skills to work together in providing shelter and nourishment for the young, they said.

Additionally, human females can live well beyond their reproductive years. And the contributions of non-reproducing grandmothers may further enhance their own children's reproductive effort and decrease infant mortality, Barrickman said. That's because grandmas offer extra assistance in child rearing and food gathering.

Studies of some primitive societies, such as the Hadza in East Africa, show that "grandchildren are more likely to survive if they have a grandmother present," she said.

Some studies suggest that starting life with a brain that is still developing itself confers some survival advantages to offspring, according to Barrickman. Extended interactions with mothers and their surroundings can help "wire their brain" as it grows, she said.

"They wind up with very plastic brains that can adjust to whatever environmental stimulations come at them," she said.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Barrickman ExtrA Life Skill primate

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>