Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FISH probing applied to biofilm control in the paper industry

16.04.2008
A research team from the Universidad Complutense has developed a new microorganism identification technique that allows for a rapid detection of the most problematic bacteria for the paper industry.

A great majority of the paper factories, specially those producing recycled paper, suffer from biofouling in their installations. Such phenomena are caused by certain bacteria that form colonies. These microorganisms have the capacity to excrete diferent polysacharids that form a protective and adhesive matrix (biofilm) that allows the bacteria to attach to the surface of pipes, tanks and other equipment.

Once the initial attachment of the biofilm takes place, organic matter and other bacteria that lack the capacity to form a biofilm can anchor themselves to the formed colony. Biofilms can evolve into hardened crusts and create incrustations that are very hard to eliminate or can progressively free themselves from the original attachment site hindering both the process as well as the quality of the produced paper.

Traditionally, to avoid the formation of biofilms, wide spectrum biocides were used at different points through the process. Nevertheless, the toxicity of such agents, along with the development of resistance by some microorganisms, has forced the industry to seek new alternative treatments based on enzymes or biodispersants that have less environmental impact and are more specific in their action, affecting principally those species that are the main cause of the problems. In the paper industry, the main species of bacteria with capacity to form biofilms belong to the genus Enterobacter; the most common ones being Pantoea agglomerans, Enterobacter sp., Raoultella y Klebsiella sp.

... more about:
»Biofilm »microorganism

The cellulose and paper research group from the department of chemical engineering, working in collaboration with the department of microbiology (animal health) biochemistry and molecular biology at the Universidad Complutense, have developed and patented a new method to detect these bacterial species in the paper industry by means of a probe based on “in situ” hybridization (that does not require biofilms to be cultured) and fluorescent markers (FISH). This method is based on the selective reacction of a molecular marker designed to react by attaching to the specific DNA of a particular mircroorganism. Once attached, part of the marker molecule called fluorophor activates and produces fluorescence. By taking a microscopic image of the medium in wich the reaction takes place and procesing it digitally, it is posible to carry out reliable counting of the number of bacteria of each type that are present per unit volume of the sample. In this way, by knowing the bacterial species present in the installations and the concentration, antimicrobial treatments can be tailored for the detected flora and can be done so with a better adjusted dosage. The aplication of this technique in the paper industry would generate a reduction of the costs of maintaining the installations and greatly reduce the enviromental impact associated with the treatments that use biocides.

Recomended links
http://www.springerlink.com/content/100457/?Content+Status=Accepted&sort=p_OnlineDate&sortorder=desc&v=expanded&o=40

Área de Cultura Científica | alfa
Further information:
http://www.ucm.es

Further reports about: Biofilm microorganism

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>