Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FISH probing applied to biofilm control in the paper industry

16.04.2008
A research team from the Universidad Complutense has developed a new microorganism identification technique that allows for a rapid detection of the most problematic bacteria for the paper industry.

A great majority of the paper factories, specially those producing recycled paper, suffer from biofouling in their installations. Such phenomena are caused by certain bacteria that form colonies. These microorganisms have the capacity to excrete diferent polysacharids that form a protective and adhesive matrix (biofilm) that allows the bacteria to attach to the surface of pipes, tanks and other equipment.

Once the initial attachment of the biofilm takes place, organic matter and other bacteria that lack the capacity to form a biofilm can anchor themselves to the formed colony. Biofilms can evolve into hardened crusts and create incrustations that are very hard to eliminate or can progressively free themselves from the original attachment site hindering both the process as well as the quality of the produced paper.

Traditionally, to avoid the formation of biofilms, wide spectrum biocides were used at different points through the process. Nevertheless, the toxicity of such agents, along with the development of resistance by some microorganisms, has forced the industry to seek new alternative treatments based on enzymes or biodispersants that have less environmental impact and are more specific in their action, affecting principally those species that are the main cause of the problems. In the paper industry, the main species of bacteria with capacity to form biofilms belong to the genus Enterobacter; the most common ones being Pantoea agglomerans, Enterobacter sp., Raoultella y Klebsiella sp.

... more about:
»Biofilm »microorganism

The cellulose and paper research group from the department of chemical engineering, working in collaboration with the department of microbiology (animal health) biochemistry and molecular biology at the Universidad Complutense, have developed and patented a new method to detect these bacterial species in the paper industry by means of a probe based on “in situ” hybridization (that does not require biofilms to be cultured) and fluorescent markers (FISH). This method is based on the selective reacction of a molecular marker designed to react by attaching to the specific DNA of a particular mircroorganism. Once attached, part of the marker molecule called fluorophor activates and produces fluorescence. By taking a microscopic image of the medium in wich the reaction takes place and procesing it digitally, it is posible to carry out reliable counting of the number of bacteria of each type that are present per unit volume of the sample. In this way, by knowing the bacterial species present in the installations and the concentration, antimicrobial treatments can be tailored for the detected flora and can be done so with a better adjusted dosage. The aplication of this technique in the paper industry would generate a reduction of the costs of maintaining the installations and greatly reduce the enviromental impact associated with the treatments that use biocides.

Recomended links
http://www.springerlink.com/content/100457/?Content+Status=Accepted&sort=p_OnlineDate&sortorder=desc&v=expanded&o=40

Área de Cultura Científica | alfa
Further information:
http://www.ucm.es

Further reports about: Biofilm microorganism

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>