Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel living system recreates predator-prey interaction

15.04.2008
The hunter-versus-hunted phenomenon exemplified by a pack of lionesses chasing down a lonely gazelle has been recreated in a Petri dish with lowly bacteria.

Working with colleagues at Caltech, Stanford and the Howard Hughes Medical Institute, a Duke University bioengineer has developed a living system using genetically altered bacteria that he believes can provide new insights into how the population levels of prey influence the levels of predators, and vice-versa.

The Duke experiment is an example of a synthetic gene circuit, where researchers load new "programming" into bacteria to make them perform new functions. Such re-programmed bacteria could see a wide variety of applications in medicine, environmental cleanup and biocomputing. In this particular Duke study, researchers rewrote the software of the common bacteria Escherichia coli (E. coli.) to form a mutually dependent living circuit of predator and prey.

The bacterial predators don't actually eat the prey, however. The two populations control each others' suicide rates.

... more about:
»Living »ecosystem »predator-prey »prey

“We created a synthetic ecosystem made up of two distinct populations of E. coli, each with its own specific set of programming and each with the ability to affect the existence of the other,” said Lingchong You, assistant professor of biomedical engineering at Duke’s Pratt School of Engineering and member of Duke’s Institute for Genome Sciences and Policy. “This ecosystem is quite similar to the traditional predator-prey relationship seen in nature and may allow us to explore the dynamics of interacting populations in a predictable manner.”

The results of You’s study appear April 15 in the journal Molecular Systems Biology. The research was supported by National Institutes of Health, the Defense Advanced Research Projects Agency, the Howard Hughes Medical Institute, and the David and Lucile Packard Foundation.

This field of study, known as synthetic biology, emerged on the scientific scene around 2000, and many of the systems created since have involved the reprogramming of single bacteria. The current circuit is unique in that two different populations of reprogrammed bacteria live in the same ecosystem and are dependent on each other for survival.

“The key to the success of this kind of circuit is the ability of the two populations to communicate with each other,” You said. “We created bacteria representing the predators and the prey, with each having the ability to secrete chemicals into their shared ecosystem that can protect or kill.”

Central to the operation of this circuit are the numbers of predator and prey cells relative to each other in their controlled environment. Variations in the number of cells of each type trigger the activation of the reprogrammed genes, stimulating the creation of different chemicals.

In this system, low levels of prey in the environment cause the activation of a “suicide” gene in the predator, causing them to die. However, as the population of prey increases, it secretes into the environment a chemical that, when it achieves a high enough concentration, stimulates a gene in the predator to produce an “antidote” to the suicide gene. This leads to an increase in predators, which in turn causes the predator to produce another chemical which enters the prey cell and activates a “killer” gene, causing the prey to die.

“This system is much like the natural world, where one species – the prey – suffers from growth of another species – the predator,” You said. “Likewise, the predator benefits from the growth of the prey.”

This circuit is not an exact representation of the predator-prey relationship in nature because the prey stops the programmed suicide of predator instead of becoming food, and both populations compete for the same “food” in their world. Nevertheless, You believes that the circuit will become a useful tool for biologic researchers.

“This system provides clear mapping between genetics and the dynamics of population change, which will help in future studies of how molecular interactions can influence population changes, a central theme of ecology,” You said. “There are literally unlimited ways to change variables in this system to examine in detail the interplay between environment, gene regulation and population dynamics.

“With additional control over the mixing or segregating of different populations, we should be able to program bacteria to mimic the development and differentiation of more complex organisms,” he said.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Living ecosystem predator-prey prey

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>