Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Georgetown researchers find stem cell marker controls 2 key cancer pathways

15.04.2008
Researchers at Georgetown University Medical Center have discovered that a gene associated with human breast stem cells can stimulate development of mammary cells by activating two critical cancer pathways.

They say this finding, reported at the annual meeting of the American Association for Cancer Research (AACR), provides new evidence that breast cancer can arise from stem cells and that targeting this gene might provide a new way to treat cancers of the breast as well as other tumor types.

“This is the first time any role has been attributed to this gene, and it turns out to be one that is surprisingly powerful,” says the study’s lead author, Xiaoyang Wang, Ph.D., Postdoctoral Fellow at Georgetown’s Lombardi Comprehensive Cancer Center.

Specifically, Wang and the researchers show for the first time that this gene, Musashi1 (Msi1), switches on Wnt and Notch cell signaling. Both of these pathways help control stem cell growth, and are known to be critically important to the development of many cancers.

... more about:
»Glazer »Marker »Msi1 »Wnt »mammary

Msi1 was named after a famous 17th century Japanese swordsman, Miyamoto Musashi, by Japanese researcher Hideyuki Okano, Ph.D., who identified it in fruit flies in 1994. Okano currently collaborates with the Georgetown scientists.

Recent studies have shown Msi1 to be a marker of human stem cells in general because it has been found in human breast, colon, brain, skin, and other cells, says Robert Glazer, Ph.D., a professor of Oncology and Pharmacology and the study’s senior author.

So Glazer and Wang decided to probe the gene’s function. “Msi1 is known to be a marker of stem cells, but no one knows what it does. We wanted to see if it had a function in the mammary gland,” Glazer says.

They were especially interested in whether Msi1 is associated with cancer development because recent studies have suggested that stem cells may be the causative root of some cancers – a notion that is vigorously debated among cancer researchers.

“It is really critical to understand if stem cells are involved in cancer development because a lot of therapies used to treat cancer don’t target stem cells,” he says. “That may explain why tumors come back.”

In laboratory experiments, the scientists found that, in mammary cell development, Msi1 drives mammary cells along different lineages – in other words, it can decide what type of cell develops in the breast, be it muscle cells or cells that line milk ducts, etc.

In cancer, the Wnt and Notch pathways are often activated, and the researchers found that Msi1 is expressed in particularly aggressive tumors. The researchers then tested whether Msi1 regulates these pathways in mammary cells and found that it did.

The researchers then studied how Msi1 drives the Wnt and Notch pathways found that when Msi1 was over-expressed, there was an increased secretion of a growth factor known as proliferin, and reduced secretion of the Wnt pathway inhibitor, Dickkopf-3. Additionally, Msi1 programmed the expression of a number of genes that have a concerted effect on the cell cycle, Wang says.

“We believe that while Msi1 may contribute to cell proliferation, it is not the single gene that controls cancer development,” Glazer says.

“This work suggests, but does not prove, that stem cells drive breast cancer formation,” he says. “Msi1 might make a good therapeutic target, and we are currently testing ways to interfere with its function in cells to see if it disrupts cancer cell proliferation.”

Karen Mallet | EurekAlert!
Further information:
http://lombardi.georgetown.edu
http://www.georgetown.edu

Further reports about: Glazer Marker Msi1 Wnt mammary

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>