Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover 'modus operandi' of heart muscle protein

14.04.2008
Implications for cardiac development and health

Researchers at the University of Pennsylvania School of Medicine have discovered that a protein called leiomodin (Lmod) promotes the assembly of an important heart muscle protein called actin. What’s more, Lmod directs the assembly of actin to form the pumping unit of the heart. The findings appear in this week’s issue of Science.

“Very little was known about Lmod when we began this study,” says lead author Roberto Dominguez, PhD, Associate Professor of Physiology.

“It appeared that this protein was present in muscle cells but this had not been demonstrated directly and nobody knew what it did,” explains Dominguez. “We compared the amino acid sequence of Lmod with the sequence of another protein called tropomodulin [Tmod] that was already known to bind actin filaments in muscle cells. We found that one part of Lmod was very similar to Tmod, but Lmod was a bigger protein than Tmod and contained unique features that made us suspect that it could assemble the actin filaments of the heart muscle. This is exactly what we found.”

... more about:
»Control »Lmod »Muscle »actin »cardiac »filaments

The results answer a question that scientists studying the heart have long asked: What controls the assembly of the pumping unit of the heart?

Actin is the most abundant protein in most animal cells and forms long polymers, or filaments, that make up the cell skeleton. In the cells that make up muscles and the heart, interactions of actin filaments with motor proteins produce the contractions that pump blood through the body.

Actin spontaneously forms polymers in test tubes, but living cells use nucleator proteins to control the time and place where actin filaments forms. “For a long time, physiologists have wondered what serves as the nucleator protein in cardiac muscle cells,” says co-author Professor Thomas Pollard, PhD, of Yale University. “It was very satisfying after all these years to discover that Lmod can serve as the nucleator protein to initiate the forming of actin polymers in heart muscle cells.”

Lmod also directs actin filaments to the sarcomere, the part of the heart that controls contractions or pumping. When Lmod was knocked down in cardiac muscle cells by an RNA silencing technique, the sarcomeres became completely disorganized and could not direct muscles to contract.

Proper localization of Lmod in heart cells is critical, because even moderately elevated levels promote the formation of abnormal actin bundles in the nuclei of cardiac muscle cells where actin does not belong. A similar disorganization of actin bundles is characteristic of a disease of skeletal muscle weakness called intranuclear rod myopathy. Although this disease is caused by a mutation in a skeletal muscle-specific actin gene, the similarity in appearance suggests that mutations in Lmod could cause the same type of disease in cardiac muscle cells.

The Penn team is currently studying how the heart regulates the level of Lmod and how Lmod might be relevant to cardiac muscle disease. In addition, the team is attempting to crystallize Lmod in order to study its structure directly.

Malgorzata Boczkowska of Penn and David Chereau of Boston Biomedical Institute are co-first authors of this study. Other key contributors are Pekka Lappalainen and Aneta Skwarbek-Maruszewska of the University of Helsinki; Ikuko Fujiwara of Yale; David B. Hayes of Boston Biomedical Institute; and Grzegorz Rebowski of Penn. The study was supported by grants from the National Heart Lung and Blood Institute and the National Institute of General Medical Sciences.

PENN Medicine is a $3.5 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #3 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three hospitals — its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center — a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: Control Lmod Muscle actin cardiac filaments

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>