Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unconscious decisions in the brain

14.04.2008
A team of scientists has unravelled how the brain unconsciously prepares our decisions

Already several seconds before we consciously make a decision its outcome can be predicted from unconscious activity in the brain. This is shown by a study of scientists from the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig, in collaboration with the Charité University Hospital and the Bernstein Center for Computational Neuroscience in Berlin.

The researchers from the group of Professor John-Dylan Haynes used a brain scanner to investigate what happens in the human brain just before a decision is made. "Many processes in the brain occur automatically and without involvement of our consciousness. This prevents our mind from being overloaded by simple routine tasks. But when it comes to decisions we tend to assume they are made by our conscious mind. This is questioned by our current findings."

The study by Haynes and his colleagues Chun Siong Soon, Marcel Brass and Hans-Jochen Heinze will be published in the May issue of Nature Neuroscience and will available online on Sunday April 13th at 1pm EST (Embargo date).

... more about:
»Haynes »conscious »predict »prepared »unconsciously

In the study participants could freely decide if they wanted to press a button with their left or right hand. They were free to make this decision whenever they wanted, but had to remember at which time they felt they had made up their mind. The aim of the experiment was to find out what happens in the brain in the period just before person felt the decision was made.

The researchers found that it was possible to predict from brain signals which option participants would take already seven seconds before they consciously made their decision. Normally researchers look what happens when the decision is made, but not what happens several seconds before. The fact that decisions can be predicted so long before they are made is a striking finding.

This unprecedented prediction of a free decision was made possible by sophisticated computer programs that were trained to recognize typical brain activity patterns preceding each of the two choices. Micropatterns of activity in frontopolar cortex were predictive of the choices even before participants knew which option they were going to choose. The decision could not be predicted perfectly, but prediction was clearly above chance. This suggests that the decision is unconsciously prepared ahead of time but the final decision might still be reversible.

"Most researchers investigate what happens when people have to decide immediately, typically as a rapid response to an event in our environment. Here we were focusing on the more interesting decisions that are made in a more natural, self-paced manner", Haynes explains.

More than 20 years ago the American brain scientist Benjamin Libet found a brain signal, the so-called "readiness-potential" that occurred a fraction of a second before a conscious decision. Libet's experiments were highly controversial and sparked a huge debate. Many scientists argued that if our decisions are prepared unconsciously by the brain, then our feeling of "free will" must be an illusion. In this view it is the brain that makes the decision, not a person's conscious mind. Libet's experiments were particularly controversial because he found only a brief time delay between brain activity and the conscious decision.

In contrast, Haynes and colleagues now show that brain activity predicts even up to 7 seconds ahead of time how a person is going to decide. But they also warn that the study does not finally rule out free will: "Our study shows that decisions are unconsciously prepared much longer than previously thought. But we do not know yet where the final decision is made. Especially we still need to investigate whether a decision prepared by these brain areas can still be reversed."

Original publication:
Chun Siong Soon, Marcel Brass, Hans-Jochen Heinze & John-Dylan Haynes (2008): Unconscious determinants of free decisions in the human brain: Nature Neuroscience May 2008.
For further information please contact:
Prof. Dr. John-Dylan Haynes
Bernstein Center for Computational Neuroscience, Berlin
Tel.: +49 30 2093 6762
Email: haynes@bccn-berlin.de

Katrin Weigmann | idw
Further information:
http://www.charite.de
http://www.cbs.mpg.de
http://www.bccn-berlin.de

Further reports about: Haynes conscious predict prepared unconsciously

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>