Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop strategy to rapidly describe outbreak strains with next-generation DNA sequencing

11.04.2008
In the event of an outbreak or a bioterrorist attack, rapid identification of the genetic changes responsible for virulence or drug resistance is essential to mounting an effective response.

Standard DNA sequencing and analysis of a pathogen genome is time-intensive and likely impractical during an emergency. Researchers have now developed a comparative genomics strategy to drastically reduce the time needed to accurately identify unique genetic properties of a potential outbreak strain. This report, which demonstrates the approach using next-generation sequencing technology, is published online today in Genome Research.

Sanger DNA sequencing, the established technology used to sequence the genomes of many species, including the genomes of humans and hundreds of bacteria, could potentially be used to sequence and analyze a new human pathogen. However, the time required for sequencing and subsequent analysis, or “finishing,” is such that this approach is not feasible when a rapid response to an outbreak or bioterrorist attack is required. New sequencing technologies are now available, allowing an entire bacterial genome to be sequenced in several hours, but time-intensive finishing steps are still required to determine the complete genome sequence.

In this study, researchers led by Drs. Bernard La Scola and Didier Raoult of the University of the Mediterranean set out to determine whether a rapidly sequenced incomplete genome could be used to quickly characterize an outbreak strain by comparative analysis. “In the context of an outbreak, a quick approach may help to identify immediately the genetic determinants responsible for modified virulence or transmission, explains La Scola. “The aim of this work was to evaluate the recently available automated pyrosequencing technology without finishing for this purpose.”

F. tularensis, the causative pathogen of tularemia, is one of the most infectious bacteria known, and there is particular concern that this organism could be manipulated for use as a biological weapon. La Scola and colleagues sequenced a strain isolated from a tularemia patient using the Roche/454 Life Sciences GS20 sequencing system, and compared these sequences with several other strains of F. tularensis, including a strain with reduced pathogencity and an antiobiotic-resistant strain.

The researchers demonstrated that next-generation sequencing of a bacterial genome without finishing could be used to effectively identify several unique features of the F. tularensis clinical strain in a matter of weeks. “By using this strategy, if there are a sufficient number of bioinformaticians working on the project, DNA extraction to complete analysis of the genome can take approximately 6 weeks,” describes La Scola. “We demonstrated that this strategy was efficient to detect gene polymorphisms such as a gene modification responsible for antibiotic resistance, and loss of genetic material.” Furthermore, La Scola and colleagues were able to distinguish the clinical strain from 80 other strains of F. tularensis.

While high-throughput sequencing technology and the comparative genomic analysis strategy outlined in this work have significantly decreased the time required for characterization of an outbreak strain, La Scola notes that future advances in software for sequence data analysis and genome comparison could speed up the process even further.

Scientists from the University of the Mediterranean (Marseilles, France) contributed to this study.

This work was supported by Sanofi-Aventis France, Bayer Pharma, and the European Commission.

Media contacts:

Bernard La Scola, M.D., Ph.D. (bernard.lascola@medecine.univ-mrs.fr; +33-4-91385517) and Didier Raoult, M.D., Ph.D. (didier.raoult@medecine.univ-mrs.fr, +33-4-91385517) have agreed to be contacted for more information.

Interested reporters may obtain copies of the manuscript from Peggy Calicchia, Editorial Secretary, Genome Research (calicchi@cshl.org; +1-516-422-4012).

About the article:

The manuscript will be published online ahead of print on April 11, 2008. Its full citation is as follows: La Scola, B., Elkarkouri, K., Li, W., Wahab, T., Fournous, G., Rolain, J., Biswas, S., Drancourt, M., Robert, C., Audic, S., Löfdahl, S., and Raoult, D. Rapid comparative genomic analysis for clinical microbiology: The Francisella tularensis paradigm. Genome Res. doi:10.1101/gr.7126608.

About Genome Research:

Genome Research (www.genome.org) is an international, continuously published, peer-reviewed journal published by Cold Spring Harbor Laboratory Press. Launched in 1995, it is one of the five most highly cited primary research journals in genetics and genomics.

About Cold Spring Harbor Laboratory Press:

Cold Spring Harbor Laboratory Press is an internationally renowned publisher of books, journals, and electronic media, located on Long Island, New York. It is a division of Cold Spring Harbor Laboratory, an innovator in life science research and the education of scientists, students, and the public. For more information, visit www.cshlpress.com.

Genome Research issues press releases to highlight significant research studies that are published in the journal.

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.org
http://www.genome.org

Further reports about: Comparative DNA Genetic Genom Genome Scola Strategy genomic outbreak required strain tularensis

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>