Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mitochondria play role in pathogenesis of AD and estrogen-induced neuroprotection

08.04.2008
As the major source of free radicals in cells, mitochondria contribute to the high levels of oxidative stress believed to play a role in the pathogenesis of Alzheimer’s disease.

Now, a new study from the laboratory of Dr. Roberta Brinton, University of Southern California, demonstrates that estrogen reduces this oxidative stress caused by the mitochondria while increasing the ability of the mitochondria to generate energy – important since there is usually an energy deficit in the Alzheimer brain.

The study was presented April 5 at Experimental Biology 2008 in San Diego by Jia Yao, a graduate student in Dr. Brinton’s laboratory. The presentation is part of the scientific program of the American Association of Anatomists (AAA), and Mr. Yao’s presentation is a finalist for the AAA Langman Graduate Studet Platform Presentation Award. He also received an AAA travel award.

Mitochondria, small organelles within the cells, use a process called Oxidative Phosphorylation to generate the vast majority of the adenosine triposphate (ATP) molecules that cells utilize to function properly. If the mitochondria become less efficient with age or disease, they use less up oxygen during this process. This inefficiency produces a double hit against the brain: fewer energy molecules being produced and more free radicals being released, leading to damaging oxidative stress.

Using a combination of biochemical and proteomic (protein) approaches, Dr. Brinton’s research team demonstrated how estrogen acts to regulate mitochondrial function in ways pivotal for protection against Alzheimer’s disease. These include:

an increase of mitochondrial efficiency, enhancing the organelles’ ability to generate energy-laden ATP molecules needed by the brain;

increased expression of key proteins required for ATP generation;

reduction of oxidative stress, protecting neurons from oxidative damage;

prevention of excess apoptosis, or programmed cell death, of neurons of the brain;

and protection of neurons from mitochondrial toxins, which can induce further mitochondrial dysfunction and cell death.

Dr. Brinton and her research team currently are validating the energy-production levels of mitochondria as a biomarker that could detect the presence of Alzheimer’s in the earliest stages, when the neurodegenerative process might be stopped or slowed or therapeutics be more effective. They believe this new information on how estrogen regulates mitochondrial function also sheds light on how to develop a new generation of effective Alzheimer therapeutics. Dr. Brinton currently is developing new, brain specific molecules that promote neurological defense against Alzheimer’s, using similar mechanisms as estrogen, but without estrogen’s negative side effects.

Sylvia Wrobel | EurekAlert!
Further information:
http://www.faseb.org

Further reports about: Alzheimer Estrogen Oxidative mitochondria mitochondrial

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>