Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mitochondria play role in pathogenesis of AD and estrogen-induced neuroprotection

As the major source of free radicals in cells, mitochondria contribute to the high levels of oxidative stress believed to play a role in the pathogenesis of Alzheimer’s disease.

Now, a new study from the laboratory of Dr. Roberta Brinton, University of Southern California, demonstrates that estrogen reduces this oxidative stress caused by the mitochondria while increasing the ability of the mitochondria to generate energy – important since there is usually an energy deficit in the Alzheimer brain.

The study was presented April 5 at Experimental Biology 2008 in San Diego by Jia Yao, a graduate student in Dr. Brinton’s laboratory. The presentation is part of the scientific program of the American Association of Anatomists (AAA), and Mr. Yao’s presentation is a finalist for the AAA Langman Graduate Studet Platform Presentation Award. He also received an AAA travel award.

Mitochondria, small organelles within the cells, use a process called Oxidative Phosphorylation to generate the vast majority of the adenosine triposphate (ATP) molecules that cells utilize to function properly. If the mitochondria become less efficient with age or disease, they use less up oxygen during this process. This inefficiency produces a double hit against the brain: fewer energy molecules being produced and more free radicals being released, leading to damaging oxidative stress.

Using a combination of biochemical and proteomic (protein) approaches, Dr. Brinton’s research team demonstrated how estrogen acts to regulate mitochondrial function in ways pivotal for protection against Alzheimer’s disease. These include:

an increase of mitochondrial efficiency, enhancing the organelles’ ability to generate energy-laden ATP molecules needed by the brain;

increased expression of key proteins required for ATP generation;

reduction of oxidative stress, protecting neurons from oxidative damage;

prevention of excess apoptosis, or programmed cell death, of neurons of the brain;

and protection of neurons from mitochondrial toxins, which can induce further mitochondrial dysfunction and cell death.

Dr. Brinton and her research team currently are validating the energy-production levels of mitochondria as a biomarker that could detect the presence of Alzheimer’s in the earliest stages, when the neurodegenerative process might be stopped or slowed or therapeutics be more effective. They believe this new information on how estrogen regulates mitochondrial function also sheds light on how to develop a new generation of effective Alzheimer therapeutics. Dr. Brinton currently is developing new, brain specific molecules that promote neurological defense against Alzheimer’s, using similar mechanisms as estrogen, but without estrogen’s negative side effects.

Sylvia Wrobel | EurekAlert!
Further information:

Further reports about: Alzheimer Estrogen Oxidative mitochondria mitochondrial

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>