Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mitochondria play role in pathogenesis of AD and estrogen-induced neuroprotection

08.04.2008
As the major source of free radicals in cells, mitochondria contribute to the high levels of oxidative stress believed to play a role in the pathogenesis of Alzheimer’s disease.

Now, a new study from the laboratory of Dr. Roberta Brinton, University of Southern California, demonstrates that estrogen reduces this oxidative stress caused by the mitochondria while increasing the ability of the mitochondria to generate energy – important since there is usually an energy deficit in the Alzheimer brain.

The study was presented April 5 at Experimental Biology 2008 in San Diego by Jia Yao, a graduate student in Dr. Brinton’s laboratory. The presentation is part of the scientific program of the American Association of Anatomists (AAA), and Mr. Yao’s presentation is a finalist for the AAA Langman Graduate Studet Platform Presentation Award. He also received an AAA travel award.

Mitochondria, small organelles within the cells, use a process called Oxidative Phosphorylation to generate the vast majority of the adenosine triposphate (ATP) molecules that cells utilize to function properly. If the mitochondria become less efficient with age or disease, they use less up oxygen during this process. This inefficiency produces a double hit against the brain: fewer energy molecules being produced and more free radicals being released, leading to damaging oxidative stress.

Using a combination of biochemical and proteomic (protein) approaches, Dr. Brinton’s research team demonstrated how estrogen acts to regulate mitochondrial function in ways pivotal for protection against Alzheimer’s disease. These include:

an increase of mitochondrial efficiency, enhancing the organelles’ ability to generate energy-laden ATP molecules needed by the brain;

increased expression of key proteins required for ATP generation;

reduction of oxidative stress, protecting neurons from oxidative damage;

prevention of excess apoptosis, or programmed cell death, of neurons of the brain;

and protection of neurons from mitochondrial toxins, which can induce further mitochondrial dysfunction and cell death.

Dr. Brinton and her research team currently are validating the energy-production levels of mitochondria as a biomarker that could detect the presence of Alzheimer’s in the earliest stages, when the neurodegenerative process might be stopped or slowed or therapeutics be more effective. They believe this new information on how estrogen regulates mitochondrial function also sheds light on how to develop a new generation of effective Alzheimer therapeutics. Dr. Brinton currently is developing new, brain specific molecules that promote neurological defense against Alzheimer’s, using similar mechanisms as estrogen, but without estrogen’s negative side effects.

Sylvia Wrobel | EurekAlert!
Further information:
http://www.faseb.org

Further reports about: Alzheimer Estrogen Oxidative mitochondria mitochondrial

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>