Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers 'see' structure of open nicotinic acetylcholine ion channels

08.04.2008
The neurotransmitter acetylcholine is an essential chemical communicator, carrying impulses from neurons to skeletal muscle cells and many parts of the nervous system.

Now researchers at the University of Illinois have painstakingly mapped the interior of a key component of the relay system that allows acetylcholine to get its message across. Their findings, which appear in the current issue of Nature Structure & Molecular Biology, reveal how the muscle nicotinic acetylcholine receptor responds to a burst of acetylcholine on the surface of a cell.

The muscle nicotinic receptor is a neurotransmitter-gated ion channel. This “gate” regulates the flow of information, in the form of charged particles, or ions, across the cell membrane. Although normally closed, when the ion channel encounters acetylcholine – or nicotine – on the surface of the cell the interaction causes the gate to open, allowing positively charged ions (called cations) to flow into the cell.

Scientists have tried for decades to understand the mechanism that allows these channels to open. Using cryo-electron microscopy, in which samples frozen at extremely low temperatures are examined under an electron microscope, some researchers obtained images of the closed ion channel. More recently, others used X-ray crystallography to image the closed-channel conformation. This technique involves crystallizing the protein, creating a lattice that reveals many details of its three-dimensional structure.

... more about:
»Grosman »Ion »Living »acetylcholine »amino »nicotinic »structure

But until the Illinois team developed a new method for probing the interior of the open channel, no studies had been able to infer the structure of the open channel conformation in a living cell. The Illinois team was able to do this by exploiting electrical properties of these membrane proteins.

Much like the flow of electrons through an electrical wire, the flow of ions through a cell membrane is a current. In the 1970s, two German researchers developed a technique for measuring the current through a single ion channel, an innovation (known as the patch-clamp technique) that won them a Nobel Prize in 1991. Claudio Grosman, a professor of molecular and integrative physiology at Illinois, and Gisela D. Cymes, a postdoctoral associate in his lab, adopted this technique, and predicted that they could use it as a tool for what they call “in vivo, time-resolved structural biology.”

In a study published in 2005, the Grosman lab showed that ionizable amino acids (that is, those that may alternately be charged or neutral) can be engineered into the inner lining of the channel pore. These changes to the amino acid sequence alter the current, revealing the structure of the open-channel conformation in unprecedented detail.

“As the ionizable amino acids bind and release protons from the watery environment, the pore gains or loses a positive charge that interferes with the normal flow of cations through the channel,” Grosman said.

After analyzing the data, Grosman’s team demonstrated that the discrete changes in current reflect the position of each mutated amino acid in the channel and the extent to which water molecules penetrate the membrane protein.

This approach allowed Grosman’s team to map the relative position of every amino acid that formed the ion channel.

The new study extends this work to more distant portions of the protein.

After comparing these findings to direct studies of the structure of the closed channel, Grosman concluded that the conformational changes that allow the channel to open are quite subtle. The five subunits that make up the protein channel do not rotate or pivot dramatically when opening the gate.

“There are many good reasons why I think a subtle conformational change is advantageous from an evolutionary point of view,” Grosman said.

Muscle nicotinic receptors must respond to acetylcholine with staggering speed, opening within microseconds of their exposure to the neurotransmitter.

“These ion channels are meant to be quick,” he said. “If they are too slow, we have disease.”

Grosman said that the approach developed in his lab is the first to allow scientists to infer the structure of an ion channel in its open conformation as it functions in a living cell.

“I know when the protein is open, because in single-molecule experiments the distinction between open and closed conformations is simple; the channel either passes a current or not,” he said.

In a living cell the protein responds, in measurable ways, to changes in its structure and environment, he said. “It’s not frozen at super low temperatures. It’s not in a crystalline lattice. The cells are alive at the beginning of the experiment and when we finish the experiment, the cells keep living."

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Grosman Ion Living acetylcholine amino nicotinic structure

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>