Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How HIV hides itself

01.04.2008
Researchers have discovered how Human Immunodeficiency Virus (HIV), which causes AIDS, can hide itself in our cells and dodge the attention of our normal defences, scientists heard today (Tuesday 1 April 2008) at the Society for General Microbiology’s 162nd meeting being held this week at the Edinburgh International Conference Centre.

When a normal virus such as the common cold infects people we develop an immune response and produce defence cells which can quickly get rid of the virus. But when HIV infects us it can last for our whole life. HIV does this by successfully hiding from our immune cells, which are seeking to identify and destroy the virus, fooling them into thinking that it is part of the normal trash in a cell rather than being clearly visible on the cell surface.

“HIV can make a protein called Nef, which helps the virus hide. Nef interferes with one important part of our defences which helps our immune system recognise infected cells by displaying pieces of the infecting virus or bacteria on the cell surface, forming a target for our bodies’ killer cells. When HIV infects one of our cells, the protein Nef binds to this helper system and alters it in such a way that the cell believes it belongs in the cellular trash bin rather than on the surface where our main defences can see it,” says Associate Professor Dr Kathleen Collins of the University of Michigan, USA.

The Nef protein made by HIV recruits other proteins which we naturally make within our cells to aid this subversion. The US scientists have identified these natural proteins and developed inhibitors which can block their actions, reversing the activity of Nef and potentially allowing our immune system to function properly and clear the virus from our system.

... more about:
»HIV »Nef »hide »immune

“We are currently screening a whole range of substances looking for small molecule inhibitors which could be developed into drugs to provide better therapies for people with HIV and AIDS,” says Kathleen Collins. “We have discovered that Nef takes on notably different shapes and structural forms in different contexts, which allows it to reveal or obscure different traffic signals within the infected cell as needed. Once we have a better understanding of the surfaces and shapes involved in these interactions we will be in a better position to develop medicines which may someday help to combat AIDS.”

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

Further reports about: HIV Nef hide immune

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>