Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers link genetic errors to schizophrenia

31.03.2008
A team of researchers at the University of Washington and Cold Spring Harbor Laboratories has uncovered genetic errors that may shed light on the causes of schizophrenia.

The scientists found that deletions and duplications of DNA are more common in people with the mental disorder, and that many of those errors occur in genes related to brain development and neurological function. The findings, which were replicated by a team at the National Institute of Mental Health, appear in the March 27 online edition of the journal Science.

Schizophrenia, a debilitating psychiatric disorder, affects approximately 1 percent of the population. People with schizophrenia suffer from hallucinations, delusions, and disorganized thinking, and are at risk for unusual or bizarre behaviors. The illness greatly impacts social and occupational functioning and has enormous public health costs.

The team of investigators, led by Tom Walsh, Jon McClellan, and Mary-Claire King at the UW, and Shane McCarthy and Jonathan Sebat at Cold Spring Harbor, examined whether the genetic errors, which are individually rare DNA deletions and duplications, contribute to the development of schizophrenia.

Some deletions and duplications are common and found in all humans. The researchers studied such mutations that were found only in individuals with the illness, and compared them to mutations found only in healthy persons. They theorized that rare mutations found only in schizophrenic patients would be more likely to disrupt genes related to brain functioning and thus may cause schizophrenia.

The study was conducted using DNA from 150 people with schizophrenia and 268 healthy individuals. The investigators found rare deletions and duplications of genes present in 15 percent of those with schizophrenia, versus only 5 percent in the healthy controls. The rate was even higher in patients whose schizophrenia first presented at a younger age, with 20 percent of those patients having a rare mutation.

The results were replicated by a second research team, led by Anjene Addington and Judith Rapoport at the National Institutes of Mental Health. They found a higher rate of rare duplications or deletions in patients whose schizophrenia began before age 12 years, a very rare and severe form of the disorder.

In individuals with schizophrenia, mutations were more likely to disrupt signaling genes that help organize brain development. Each mutation was different, and impacted different genes. However, several of the disrupted genes function in related neurobiological pathways.

The findings suggest that schizophrenia is caused by many different mutations in many different genes, with each mutation leading to a disruption in key pathways important to a developing brain. Once a disease-causing mutation is identified, other different disease-causing mutations may be found in the same gene in different people with the illness.

Thus, for most cases of schizophrenia, the genetic causes may be different. This observation has important implications for schizophrenia research. Currently, most genetic studies examine for mutations that are shared among different individuals with the illness. These approaches will not work if most patients have different mutations causing their condition.

Fortunately, there are now genomic technologies available that allow researchers to discover rare mutations within each individual with a disorder. As these technologies improve, it will be possible to detect other types of disease-causing mutations. Eventually, the identification of genes disrupted in individuals with schizophrenia will allow the development of new treatments more specifically targeted to disrupted pathways.

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Genetic Mutation Rare disorder disrupt duplications errors illness individual schizophrenia

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>