Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric shocks boost plants' production of commercially useful chemicals

28.03.2008
Now for some "shocking" news about plants: Exposing plants to electricity can boost production of useful plant chemicals and may provide a cheaper, safer, and more efficient method for producing medicines, pesticides, and other commercially important plant-based materials, researchers in Arizona and Oklahoma report.

Researchers have known for years that plants can produce a diverse array of substances as part of their natural response to environmental factors such as microbial infection, sunlight, and chemical exposure. To boost levels of plant chemicals for commercial purposes, scientists have often turned to synthetic chemical additives as well as genetic engineering, which can be expensive and potentially harmful. A better method is needed, scientists say.

In the new study, Hans VanEtten of The University of Arizona in Tucson and his colleagues studied the effects of electricity on the ability of the pea plant to produce pisatin, an antifungal substance. They found that exposing pea plants to certain sub-lethal doses of electric current produced 13 times higher amounts of pisatin than plants that were not exposed to electricity. The researchers observed similar increases in plant chemicals produced by a variety of other plants when exposed to electricity. There were no adverse effects on the plants.

The article, "Sub-lethal Levels of Electric Current Elicit the Biosynthesis of Plant Secondary Metabolites" is scheduled for the April 4 issue of American Chemical Society's Biotechnology Progress, a bi-monthly journal. VanEtten's co-authors are Evans Kaimoyo, Catherine Wasmann and Joel L. Cuello of The University of Arizona; Lloyd W. Sumner of the Samuel Roberts Noble Foundation in Ardmore, Okla.; and Mohamed A. Farag, formerly of the Samuel Roberts Noble Foundation and now at Cairo University in Egypt. VanEtten and Cuello are members of UA's BIO5 Institute.

... more about:
»Electric »commercially »electricity »produce

The research was funded by the U.S. Department of Agriculture.

CONTACT:

Hans VanEtten
Professor of plant pathology
University of Arizona
Tucson, Arizona 85721
Phone: 520-621-9355
Fax: 520-621-7186
Email: vanetten@ag.arizona.edu

Mari N. Jensen | University of Arizona
Further information:
http://dx.doi.org/10.1021/bp0703329
http://www.arizona.edu

Further reports about: Electric commercially electricity produce

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>