Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robert Weinberg: Research Can Begin to Rationalize Complex Process of the Development of Metastases

27.03.2008
"The process of tumor metastasis has until recently been one of bewildering complexity. However, one can now begin to rationalize this complex process in terms of a relatively small number of master control genes which normally operate during normal development and which are appropriated and exploited by cancer cells", Dr. Robert Weinberg, a pioneer in cancer research from the Whitehead Institute for Biomedical Research, Cambridge, USA, said in Berlin.

The reason for this is the discovery of transcription factors in the last few years. "Transcription factors are proteins that turn genes on and off and can act to program many of the traits of highly malignant cells", as described by Dr. Weinberg, who is also a Professor at the Massachusetts Institute of Technology (MIT).

He delivered the key note lecture at the opening of the International Conference on "Invasion and Metastasis" of the Max Delbrück Center for Molecular Medicine (MDC) in Berlin, Germany on Wednesday evening (March 26). He is most widely known for his discoveries of the first human oncogene - a gene that causes normal cells to form tumors - and the first tumor suppressor gene.

In 2007, almost 560,000 Americans and more than 1,8 million Europeans died of cancer, according to the American Cancer Society.

... more about:
»EMT »enable »epithelial »primary

"The vast majority (90 percent) of these patients were struck down by metastases, cancer cells that have disseminated and colonized in organs far from the primary tumor", Dr. Weinberg pointed out. "Only ten percent of cancer patients die of their primary tumors".

The majority of life-threatening cancers about 80 per cent, occur in epithelial tissue. Epithelial cells cover the outside of the body, skin cells, and line the inner organs such as breast glands, the colon, the prostrate, and blood and lymph vessels. But what exactly enables cancer cells to leave the primary tumor and "travel by the body's highways - the blood and the lymphatic vessels -", as Dr. Weinberg put it, to seek new sites where they may found new colonies?

Drastic change of the cell's traits

Recent research suggests that a drastic alteration of the primary cancer cells (called epithelial- mesenchymal transition or EMT) plays a crucial role in this complex biological process. "The EMT involves a profound change in the biological phenotype of cells in which they shed their epithelial traits together with their gene expression pattern and acquire mesenchymal ones instead", Dr. Weinberg explained.

Special epithelial markers, like E-cadherin and beta-Catenin, are depressed. These markers normally keep the epithelial cells tightly together. The mesenchymal state frees these cells to move about and to invade other tissues, and also makes them resistant to apoptosis, programmed cell death. "This pathological process is strikingly similar to the EMT normally occurring during embryogenesis and wound healing", said Weinberg.

EMT is an important program which enables carcinoma cells to become mobile and invasive. "Nonetheless, it is still unclear whether EMT underlies the malignant behavior of all carcinoma cells or whether alternative programs are activated to enable metastatic dissemination," Dr. Weinberg pointed out.

Many other questions still remain: Why do breast cancers typically metastasize in the brain, liver, bones, and lungs, prostrate cancers in the bones, and colon carcinomas in the liver? Why, after many years, do some micrometastases develop into macrometastases, which eventually lead to patient death? And, finally, why do some cancers not develop any metastases at all?

Altogether, about 160 scientists from Europe, Israel, Japan, the USA, Singapore, and Turkey participate in the conference which runs from March 26th through March 29th . The conference organizers are Prof. Walter Birchmeier and Dr. Ulrike Ziebold (both Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch) and Prof. Jürgen Behrens (University of Erlangen). Both Prof. Birchmeier and Prof. Behrens have published significant results about the formation of metastases during the past years. The conference is funded by the Deutsche Krebshilfe (German Cancer Research Foundation) and the Deutsche Forschungsgemeinschaft (DFG).

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/en/news
http://www.wi.mit.edu/research/faculty/weinberg.html

Further reports about: EMT enable epithelial primary

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>