Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A switch that controls whether cells pass point of no return

25.03.2008
Investigators at the Duke Institute for Genome Sciences and Policy have revealed the hidden properties of an on-off switch that governs cell growth.

The Duke team proved that if the switch is on, then a cell will divide, even if it’s damaged or the signal to grow disappears. Showing how the switch works may provide clues to novel drug targets for cancer and other diseases in which cell growth goes awry.

The switch is part of a critical pathway that controls cell division, the process by which the body makes new cells. Before a cell starts to divide, it goes through a checklist to make sure everything is in order, much like preparing for a long trip. If a cell senses something is wrong early on, it can halt the process. But once a cell passes a milestone called the restriction point, there’s no turning back, no matter the consequences. The switch controls this milestone and is key to cell growth.

The results will appear in the April issue of the journal Nature Cell Biology. The study was funded by the National Institutes of Health, the National Science Foundation and a David and Lucile Packard Fellowship.

... more about:
»Critical »Point »Switch »Yao »bistable »controls

The switch is part of the Rb-E2F signaling pathway. Rb, or retinoblastoma, is a key tumor suppressor gene, and E2F is a transcription factor that governs the expression of all the genes important for cells to grow.

“The wiring diagram is fundamentally the same. It’s very likely that different organisms have evolved a very conserved design principle to regulate their growth,” said Guang Yao, Ph.D., lead study author and a postdoctoral fellow in Duke’s department of molecular genetics and microbiology.

The cellular pathway that includes the switch is found in all multi-cellular life, from plants to people. A cell decides to trigger the pathway when it receives an external chemical signal to grow.

During the project, the researchers discovered the switch has an unexpected property: it is bistable. Once turned on by an external signal, the switch can maintain its on state, even if the signal disappears.

It was an engineer, Lingchong You, Ph.D., who recognized that the switch might represent a bistable condition. You, an assistant professor of biomedical engineering in Duke’s Pratt School of Engineering and an Institute for Genome Sciences & Policy (IGSP) investigator, works next door to Yao and his postdoctoral advisor Joseph Nevins, Ph.D., a professor of molecular genetics at the IGSP.

During conversations with Nevins and Yao about the restriction point phenomenon, You realized that the process could be described as a bistable switch.

The collaboration continued as the scientists broke down the pathway into individual chemical reactions that could be described by mathematical equations. Graduate student Tae Jun Lee worked with Yao to develop and analyze a mathematical model that predicted the switch could be bistable and identified the critical decision maker at the restriction point. Yao verified the results in laboratory experiments on single cells.

Nevins, who has studied the Rb-E2F pathway for 20 years, sees an opportunity to extend this approach to other critical aspects of cell behavior, such as the decisions involved in cell death.

“This pathway, and this decision whether it is time to proliferate, is very tightly coupled to decisions of cell fate,” Nevins said. “There’s a decision as to whether the proliferation process is normal, and if the answer is not, then the result is that the cell dies. We don’t know critical dynamics of that process.”

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Critical Point Switch Yao bistable controls

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>