Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A switch that controls whether cells pass point of no return

Investigators at the Duke Institute for Genome Sciences and Policy have revealed the hidden properties of an on-off switch that governs cell growth.

The Duke team proved that if the switch is on, then a cell will divide, even if it’s damaged or the signal to grow disappears. Showing how the switch works may provide clues to novel drug targets for cancer and other diseases in which cell growth goes awry.

The switch is part of a critical pathway that controls cell division, the process by which the body makes new cells. Before a cell starts to divide, it goes through a checklist to make sure everything is in order, much like preparing for a long trip. If a cell senses something is wrong early on, it can halt the process. But once a cell passes a milestone called the restriction point, there’s no turning back, no matter the consequences. The switch controls this milestone and is key to cell growth.

The results will appear in the April issue of the journal Nature Cell Biology. The study was funded by the National Institutes of Health, the National Science Foundation and a David and Lucile Packard Fellowship.

... more about:
»Critical »Point »Switch »Yao »bistable »controls

The switch is part of the Rb-E2F signaling pathway. Rb, or retinoblastoma, is a key tumor suppressor gene, and E2F is a transcription factor that governs the expression of all the genes important for cells to grow.

“The wiring diagram is fundamentally the same. It’s very likely that different organisms have evolved a very conserved design principle to regulate their growth,” said Guang Yao, Ph.D., lead study author and a postdoctoral fellow in Duke’s department of molecular genetics and microbiology.

The cellular pathway that includes the switch is found in all multi-cellular life, from plants to people. A cell decides to trigger the pathway when it receives an external chemical signal to grow.

During the project, the researchers discovered the switch has an unexpected property: it is bistable. Once turned on by an external signal, the switch can maintain its on state, even if the signal disappears.

It was an engineer, Lingchong You, Ph.D., who recognized that the switch might represent a bistable condition. You, an assistant professor of biomedical engineering in Duke’s Pratt School of Engineering and an Institute for Genome Sciences & Policy (IGSP) investigator, works next door to Yao and his postdoctoral advisor Joseph Nevins, Ph.D., a professor of molecular genetics at the IGSP.

During conversations with Nevins and Yao about the restriction point phenomenon, You realized that the process could be described as a bistable switch.

The collaboration continued as the scientists broke down the pathway into individual chemical reactions that could be described by mathematical equations. Graduate student Tae Jun Lee worked with Yao to develop and analyze a mathematical model that predicted the switch could be bistable and identified the critical decision maker at the restriction point. Yao verified the results in laboratory experiments on single cells.

Nevins, who has studied the Rb-E2F pathway for 20 years, sees an opportunity to extend this approach to other critical aspects of cell behavior, such as the decisions involved in cell death.

“This pathway, and this decision whether it is time to proliferate, is very tightly coupled to decisions of cell fate,” Nevins said. “There’s a decision as to whether the proliferation process is normal, and if the answer is not, then the result is that the cell dies. We don’t know critical dynamics of that process.”

Mary Jane Gore | EurekAlert!
Further information:

Further reports about: Critical Point Switch Yao bistable controls

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>