Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A switch that controls whether cells pass point of no return

25.03.2008
Investigators at the Duke Institute for Genome Sciences and Policy have revealed the hidden properties of an on-off switch that governs cell growth.

The Duke team proved that if the switch is on, then a cell will divide, even if it’s damaged or the signal to grow disappears. Showing how the switch works may provide clues to novel drug targets for cancer and other diseases in which cell growth goes awry.

The switch is part of a critical pathway that controls cell division, the process by which the body makes new cells. Before a cell starts to divide, it goes through a checklist to make sure everything is in order, much like preparing for a long trip. If a cell senses something is wrong early on, it can halt the process. But once a cell passes a milestone called the restriction point, there’s no turning back, no matter the consequences. The switch controls this milestone and is key to cell growth.

The results will appear in the April issue of the journal Nature Cell Biology. The study was funded by the National Institutes of Health, the National Science Foundation and a David and Lucile Packard Fellowship.

... more about:
»Critical »Point »Switch »Yao »bistable »controls

The switch is part of the Rb-E2F signaling pathway. Rb, or retinoblastoma, is a key tumor suppressor gene, and E2F is a transcription factor that governs the expression of all the genes important for cells to grow.

“The wiring diagram is fundamentally the same. It’s very likely that different organisms have evolved a very conserved design principle to regulate their growth,” said Guang Yao, Ph.D., lead study author and a postdoctoral fellow in Duke’s department of molecular genetics and microbiology.

The cellular pathway that includes the switch is found in all multi-cellular life, from plants to people. A cell decides to trigger the pathway when it receives an external chemical signal to grow.

During the project, the researchers discovered the switch has an unexpected property: it is bistable. Once turned on by an external signal, the switch can maintain its on state, even if the signal disappears.

It was an engineer, Lingchong You, Ph.D., who recognized that the switch might represent a bistable condition. You, an assistant professor of biomedical engineering in Duke’s Pratt School of Engineering and an Institute for Genome Sciences & Policy (IGSP) investigator, works next door to Yao and his postdoctoral advisor Joseph Nevins, Ph.D., a professor of molecular genetics at the IGSP.

During conversations with Nevins and Yao about the restriction point phenomenon, You realized that the process could be described as a bistable switch.

The collaboration continued as the scientists broke down the pathway into individual chemical reactions that could be described by mathematical equations. Graduate student Tae Jun Lee worked with Yao to develop and analyze a mathematical model that predicted the switch could be bistable and identified the critical decision maker at the restriction point. Yao verified the results in laboratory experiments on single cells.

Nevins, who has studied the Rb-E2F pathway for 20 years, sees an opportunity to extend this approach to other critical aspects of cell behavior, such as the decisions involved in cell death.

“This pathway, and this decision whether it is time to proliferate, is very tightly coupled to decisions of cell fate,” Nevins said. “There’s a decision as to whether the proliferation process is normal, and if the answer is not, then the result is that the cell dies. We don’t know critical dynamics of that process.”

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Critical Point Switch Yao bistable controls

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>