Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First study hints at insights to come from genes unique to humans

Among the approximately 23,000 genes found in human DNA, scientists currently estimate that there may be as few as 50 to 100 that have no counterparts in other species. Expand that comparison to include the primate family known as hominoids, and there may be several hundred unique genes.

Despite the distinctive contributions these genes likely make to our species, little is known about the roles they play. Now scientists at Washington University School of Medicine in St. Louis have produced the first detailed analysis of the cellular functions of a hominoid-only gene, TBC1D3. They affirmed earlier evidence linking the gene to cancer, showing that TBC1D3's protein can keep cellular growth factors active and helps turn on RAS, a protein that is active in a third of all human cancers.

"I was astounded at how little attention has been given to human-specific genes, which make us what we are and could potentially offer a great deal of insight into human physiology," says senior author Philip D. Stahl, Ph.D., the Edward Mallinckrodt Jr. Professor and head of Cell Biology and Physiology. "In addition, certain pathogens, such as the malaria parasite, have human specific-components in their infection cycle. Human-only genes could offer us unique insights into how the parasites take advantage of us and possibly provide potent new avenues for fighting back."

The paper appears online in The Journal of Biological Chemistry.

... more about:
»Active »Insight »TBC1D3 »effect »factor »function »paralog »receptor »unique

When scientists want to learn more about the function of a gene, they frequently disable or delete the gene in a laboratory animal and then look to see how the loss changes the animal. That won't be possible with genes unique to humans, Stahl notes. Researchers will have to resort to altering the genes' functions in human cell lines, or transplanting them into animals to see what effects they have.

TBC1D3 was originally identified by other scientists as a likely contributor to breast cancer. At the time of its discovery, researchers linked its protein to endocytosis, a process cells use to take in material from their surface.

Endocytosis plays an important role in the Stahl laboratory. His group studies how growth factor receptors, proteins important for both normal and cancerous growth, are turned on and off. Found on the surfaces of cells, growth factor receptors turn on when they bind to a growth factor protein. To turn them off, cells take in the combined receptor-protein through endocytosis and put it through a number of different processes before finally breaking down the growth factor receptor.

When Stahl and colleagues determined in 2006 that the TBC1D3 gene is only found in hominoids, their curiosity was piqued. Evolution, Stahl notes, naturally tends to retain genes involved in the most important components of metabolism. If one of these genes mutated too dramatically, that would lead to an organism so sickly that it wouldn't survive long enough to perpetuate the mutation in its descendants. So evolution "conserves" these genes, retaining them largely unchanged as one species evolves into another.

Therefore, if the genome is compared to an automobile, human-only genes are unlikely to be adding new wheels. But they could, for example, be contributing a new anti-lock braking system: a regulatory function that fine-tunes essential processes originally established millennia ago in other species.

Stahl found evidence that this is the case in TBC1D3. Human DNA has eight copies or paralogs of the TBC1D3 gene. His lab showed that the increased levels of the protein made by one of the paralogs makes human cells grow more rapidly. When they transplanted the gene for the protein into mouse cells, it had the same effect.

A closer look showed that the protein from the TBC1D3 paralog delays a process that labels growth factor receptors for breakdown, prolonging the time that their signal is active.

He also found evidence that the protein was helping to activate RAS, another gene whose protein is commonly found in human cancers.

Stahl and his colleagues plan additional research to learn whether the other paralogs of TBC1D3 have different roles. He also has several ideas for learning more about the functions of human-only genes.

"We might try an organ-by-organ approach, looking to see if any genes specific to a particular organs, such as fat, are specific to humans," he says. "We also should probably look at crystallizing the proteins from some of these genes, which can tell us more about what they interact with."

There may be human diseases where these genes are mutated or missing, Stahl speculates. The effects of such conditions could provide important clues to what the humans-only genes do.

"It's also going to be very interesting for evolutionary biologists to try to develop a sense for where these humans-only genes come from," Stahl says. "The building blocks of these genes may be present but not active in earlier species."

Michael Purdy | EurekAlert!
Further information:

Further reports about: Active Insight TBC1D3 effect factor function paralog receptor unique

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>