Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First study hints at insights to come from genes unique to humans

25.03.2008
Among the approximately 23,000 genes found in human DNA, scientists currently estimate that there may be as few as 50 to 100 that have no counterparts in other species. Expand that comparison to include the primate family known as hominoids, and there may be several hundred unique genes.

Despite the distinctive contributions these genes likely make to our species, little is known about the roles they play. Now scientists at Washington University School of Medicine in St. Louis have produced the first detailed analysis of the cellular functions of a hominoid-only gene, TBC1D3. They affirmed earlier evidence linking the gene to cancer, showing that TBC1D3's protein can keep cellular growth factors active and helps turn on RAS, a protein that is active in a third of all human cancers.

"I was astounded at how little attention has been given to human-specific genes, which make us what we are and could potentially offer a great deal of insight into human physiology," says senior author Philip D. Stahl, Ph.D., the Edward Mallinckrodt Jr. Professor and head of Cell Biology and Physiology. "In addition, certain pathogens, such as the malaria parasite, have human specific-components in their infection cycle. Human-only genes could offer us unique insights into how the parasites take advantage of us and possibly provide potent new avenues for fighting back."

The paper appears online in The Journal of Biological Chemistry.

... more about:
»Active »Insight »TBC1D3 »effect »factor »function »paralog »receptor »unique

When scientists want to learn more about the function of a gene, they frequently disable or delete the gene in a laboratory animal and then look to see how the loss changes the animal. That won't be possible with genes unique to humans, Stahl notes. Researchers will have to resort to altering the genes' functions in human cell lines, or transplanting them into animals to see what effects they have.

TBC1D3 was originally identified by other scientists as a likely contributor to breast cancer. At the time of its discovery, researchers linked its protein to endocytosis, a process cells use to take in material from their surface.

Endocytosis plays an important role in the Stahl laboratory. His group studies how growth factor receptors, proteins important for both normal and cancerous growth, are turned on and off. Found on the surfaces of cells, growth factor receptors turn on when they bind to a growth factor protein. To turn them off, cells take in the combined receptor-protein through endocytosis and put it through a number of different processes before finally breaking down the growth factor receptor.

When Stahl and colleagues determined in 2006 that the TBC1D3 gene is only found in hominoids, their curiosity was piqued. Evolution, Stahl notes, naturally tends to retain genes involved in the most important components of metabolism. If one of these genes mutated too dramatically, that would lead to an organism so sickly that it wouldn't survive long enough to perpetuate the mutation in its descendants. So evolution "conserves" these genes, retaining them largely unchanged as one species evolves into another.

Therefore, if the genome is compared to an automobile, human-only genes are unlikely to be adding new wheels. But they could, for example, be contributing a new anti-lock braking system: a regulatory function that fine-tunes essential processes originally established millennia ago in other species.

Stahl found evidence that this is the case in TBC1D3. Human DNA has eight copies or paralogs of the TBC1D3 gene. His lab showed that the increased levels of the protein made by one of the paralogs makes human cells grow more rapidly. When they transplanted the gene for the protein into mouse cells, it had the same effect.

A closer look showed that the protein from the TBC1D3 paralog delays a process that labels growth factor receptors for breakdown, prolonging the time that their signal is active.

He also found evidence that the protein was helping to activate RAS, another gene whose protein is commonly found in human cancers.

Stahl and his colleagues plan additional research to learn whether the other paralogs of TBC1D3 have different roles. He also has several ideas for learning more about the functions of human-only genes.

"We might try an organ-by-organ approach, looking to see if any genes specific to a particular organs, such as fat, are specific to humans," he says. "We also should probably look at crystallizing the proteins from some of these genes, which can tell us more about what they interact with."

There may be human diseases where these genes are mutated or missing, Stahl speculates. The effects of such conditions could provide important clues to what the humans-only genes do.

"It's also going to be very interesting for evolutionary biologists to try to develop a sense for where these humans-only genes come from," Stahl says. "The building blocks of these genes may be present but not active in earlier species."

Michael Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Active Insight TBC1D3 effect factor function paralog receptor unique

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>