Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Reconstruct Jumping Gene

14.03.2008
New Tool for Elucidating the Function of Genes

They can be found in plants, animals and even in humans - inactive remains of jumping genes, transposons. Researchers are striving to develop active transposons from these remains, using them as tools to decode gene function.

At the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, researchers have now succeeded in reconstructing the first active transposon of the Harbinger transposon superfamily.

In the laboratory, the artificial transposon developed by Dr. Ludivine Sinzelle, Dr. Zsuzsanna Izsvák, and Dr. Zoltán Ivics also shows cut-and-paste transposition in human cells and promises to serve as a useful experimental system for investigating human gene function.

... more about:
»Genome »Harbinger »Ivics »Transposon »Zoltán »function
The findings of the MDC researchers have just been published online in the Proceedings of the National Academy of Sciences (PNAS)*.

Transposons comprise about half of the human genome. "They are molecular parasites, similar to fleas, only that they are in the genome of the host and not on its back," Dr. Zoltán Ivics explained. They jump, move, and proliferate through the host, without whom they could not survive. In most cases, transposons do not fulfill any function in the human genome. "However, not all are superfluous," Dr. Ivics went on to say. "More than 100 active genes, including some associated with the immune system, have been recognized as probably derived from transposons."

To reconstruct an active transposon, Dr. Ivics' team compared the DNA of various inactive Harbinger transposons, one of the largest superfamilies of transposons. Based on these results, they developed an artificial jumping gene. "We were very lucky," Dr. Ivics said. "The very first experiment was successful."

New tool for basic research
In the cell lab, the MDC researchers inserted the transposon into the human cell by means of a gene shuttle. Via a cut-and-paste mechanism, the artificial transposon excises itself from its transport vehicle and inserts itself into the genome of the cell. If the transposon jumps into an important gene and deactivates it, it may impair important processes in the cell. As a result, researchers can draw conclusions about the function of the gene.

Moreover, in the course of evolution, transposons have been responsible for the emergence of new genes. Thus, through computerized gene analysis, Dr. Ivics' research team has discovered two new elements related to the Harbinger transposon. In a new project, Dr. Ivics aims to elucidate just what role these play in the human body.

Over the long term, scientists hope to use such transposons in gene therapy as well. With the aid of a transposon, an intact copy of a gene could be incorporated into the genome of a patient to repair a defective gene. "But until this can happen, there is still a lot to be done," Dr. Ivics pointed out. "The new gene should not just jump in anywhere."

*Transposition of a Reconstructed Harbinger Element in Human Cells and Functional Homology with Two Transposon-derived Cellular Genes

Ludivine Sinzelle1, Vladimir V. Kapitonov,2, Dawid P. Grzela1, Tobias Jursch1, Jerzy Jurka2, Zsuzsanna Izsvák1,3 and Zoltán Ivics1

1Max Delbrück Center for Molecular Medicine, Berlin, Germany;
2Genetic Information Research Institute, Mountain View, California, USA
3Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
A photo of the research group of Dr. Zoltán Ivics can be downloaded from the Internet at:

http://www.mdc-berlin.de/en/news/2008/index.html

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/en/news
http://en.wikipedia.org/wiki/Transposon
http://www.mdc-berlin.de/de/research/research_teams/transposition/index.html

Further reports about: Genome Harbinger Ivics Transposon Zoltán function

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>