Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Co-operation between figs, wasps and parasites proves three is not always a crowd!

11.03.2008
Scientists at the University of Reading have found that during mutualism, a co-operative relationship between two different species, a third parasitic species may help to keep the relationship stable. During mutualism both species benefit.

However, the long-term relationship between them can be threatened by individuals who take too much advantage of the relationship in the short-term for their own benefit. This new research suggests that the stable mutualism between tropical figs and pollinator wasps, which is about 100 million years old, may be maintained partly by parasitic wasps. This is contrary to the commonly held belief that parasites always have a negative effect.

The co-operative relationship between tropical figs and specialised pollinator wasps is such that the wasps pollinate the trees, and the trees provide resources for developing wasp offspring. The female wasp enters a fig fruit, and then pollinates the tiny flowers within the fruit. The tree’s seeds develop in parts of the flowers known as ovules, and the pollinator lays her eggs into some of these ovules. Importantly, ovules which contain developing seeds need to be free of wasp offspring because they eat the seeds. Therefore, each egg laid costs the tree one seed and in return, the female wasp’s offspring are responsible for dispersing the tree’s pollen once they leave the fig fruit. Trees need to produce both wasps and seeds for the mutualism to persist, but natural selection should favour wasps which exploit the maximum number of fig ovules in the short-term. This results in a conflict of interest between wasp and tree.

The fig fruits contain hundreds of ovules that can be grouped into ones which are situated closer to the centre of the fruit, known as inner ovules, and others which are further away from the centre of the fruit, known as outer ovules. Most pollinator wasp eggs are found in the inner ovules, whereas most fig seeds develop in the outer ovules. The female pollinator wasps avoid laying eggs in the outer ovules and this helps to keep the relationship between wasp and fig stable. This new research has found out that they do this because pollinator offspring developing in the outer ovules are at high risk of attack by parasitic wasps. These parasites lay their eggs directly into ovules from outside the fruit and will kill pollinator offspring. The risk from parasitic wasps is greatly reduced towards the centre of the fruit, which is likely to play a part in encouraging pollinators to avoid laying eggs in the outer ovules. It also reduces the total numbers of eggs which the wasps lay.

... more about:
»EGG »develop »mutualism »outer »ovule »parasites »pollinator »stable

Professor James Cook, from the University’s School of Biological Sciences said “Inner ovules can provide an ‘enemy-free-space’ for pollinator wasps to lay their eggs in. Our results suggest that this favours pollinators that lay their eggs in the inner ovules and leave the outer ovules free for fig seeds to develop in. Because a wasp and a seed cannot develop in the same ovule, this is vital to ensuring that fig seed production is safeguarded. Parasitic wasps are generally thought to have negative effects on the relationship between figs and their pollinators, but our results show that in fact they may help to keep a mutualistic relationship stable in the natural world.”

Lucy Chappell | alfa
Further information:
http://www.reading.ac.uk

Further reports about: EGG develop mutualism outer ovule parasites pollinator stable

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>