Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Co-operation between figs, wasps and parasites proves three is not always a crowd!

11.03.2008
Scientists at the University of Reading have found that during mutualism, a co-operative relationship between two different species, a third parasitic species may help to keep the relationship stable. During mutualism both species benefit.

However, the long-term relationship between them can be threatened by individuals who take too much advantage of the relationship in the short-term for their own benefit. This new research suggests that the stable mutualism between tropical figs and pollinator wasps, which is about 100 million years old, may be maintained partly by parasitic wasps. This is contrary to the commonly held belief that parasites always have a negative effect.

The co-operative relationship between tropical figs and specialised pollinator wasps is such that the wasps pollinate the trees, and the trees provide resources for developing wasp offspring. The female wasp enters a fig fruit, and then pollinates the tiny flowers within the fruit. The tree’s seeds develop in parts of the flowers known as ovules, and the pollinator lays her eggs into some of these ovules. Importantly, ovules which contain developing seeds need to be free of wasp offspring because they eat the seeds. Therefore, each egg laid costs the tree one seed and in return, the female wasp’s offspring are responsible for dispersing the tree’s pollen once they leave the fig fruit. Trees need to produce both wasps and seeds for the mutualism to persist, but natural selection should favour wasps which exploit the maximum number of fig ovules in the short-term. This results in a conflict of interest between wasp and tree.

The fig fruits contain hundreds of ovules that can be grouped into ones which are situated closer to the centre of the fruit, known as inner ovules, and others which are further away from the centre of the fruit, known as outer ovules. Most pollinator wasp eggs are found in the inner ovules, whereas most fig seeds develop in the outer ovules. The female pollinator wasps avoid laying eggs in the outer ovules and this helps to keep the relationship between wasp and fig stable. This new research has found out that they do this because pollinator offspring developing in the outer ovules are at high risk of attack by parasitic wasps. These parasites lay their eggs directly into ovules from outside the fruit and will kill pollinator offspring. The risk from parasitic wasps is greatly reduced towards the centre of the fruit, which is likely to play a part in encouraging pollinators to avoid laying eggs in the outer ovules. It also reduces the total numbers of eggs which the wasps lay.

... more about:
»EGG »develop »mutualism »outer »ovule »parasites »pollinator »stable

Professor James Cook, from the University’s School of Biological Sciences said “Inner ovules can provide an ‘enemy-free-space’ for pollinator wasps to lay their eggs in. Our results suggest that this favours pollinators that lay their eggs in the inner ovules and leave the outer ovules free for fig seeds to develop in. Because a wasp and a seed cannot develop in the same ovule, this is vital to ensuring that fig seed production is safeguarded. Parasitic wasps are generally thought to have negative effects on the relationship between figs and their pollinators, but our results show that in fact they may help to keep a mutualistic relationship stable in the natural world.”

Lucy Chappell | alfa
Further information:
http://www.reading.ac.uk

Further reports about: EGG develop mutualism outer ovule parasites pollinator stable

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>