Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Co-operation between figs, wasps and parasites proves three is not always a crowd!

11.03.2008
Scientists at the University of Reading have found that during mutualism, a co-operative relationship between two different species, a third parasitic species may help to keep the relationship stable. During mutualism both species benefit.

However, the long-term relationship between them can be threatened by individuals who take too much advantage of the relationship in the short-term for their own benefit. This new research suggests that the stable mutualism between tropical figs and pollinator wasps, which is about 100 million years old, may be maintained partly by parasitic wasps. This is contrary to the commonly held belief that parasites always have a negative effect.

The co-operative relationship between tropical figs and specialised pollinator wasps is such that the wasps pollinate the trees, and the trees provide resources for developing wasp offspring. The female wasp enters a fig fruit, and then pollinates the tiny flowers within the fruit. The tree’s seeds develop in parts of the flowers known as ovules, and the pollinator lays her eggs into some of these ovules. Importantly, ovules which contain developing seeds need to be free of wasp offspring because they eat the seeds. Therefore, each egg laid costs the tree one seed and in return, the female wasp’s offspring are responsible for dispersing the tree’s pollen once they leave the fig fruit. Trees need to produce both wasps and seeds for the mutualism to persist, but natural selection should favour wasps which exploit the maximum number of fig ovules in the short-term. This results in a conflict of interest between wasp and tree.

The fig fruits contain hundreds of ovules that can be grouped into ones which are situated closer to the centre of the fruit, known as inner ovules, and others which are further away from the centre of the fruit, known as outer ovules. Most pollinator wasp eggs are found in the inner ovules, whereas most fig seeds develop in the outer ovules. The female pollinator wasps avoid laying eggs in the outer ovules and this helps to keep the relationship between wasp and fig stable. This new research has found out that they do this because pollinator offspring developing in the outer ovules are at high risk of attack by parasitic wasps. These parasites lay their eggs directly into ovules from outside the fruit and will kill pollinator offspring. The risk from parasitic wasps is greatly reduced towards the centre of the fruit, which is likely to play a part in encouraging pollinators to avoid laying eggs in the outer ovules. It also reduces the total numbers of eggs which the wasps lay.

... more about:
»EGG »develop »mutualism »outer »ovule »parasites »pollinator »stable

Professor James Cook, from the University’s School of Biological Sciences said “Inner ovules can provide an ‘enemy-free-space’ for pollinator wasps to lay their eggs in. Our results suggest that this favours pollinators that lay their eggs in the inner ovules and leave the outer ovules free for fig seeds to develop in. Because a wasp and a seed cannot develop in the same ovule, this is vital to ensuring that fig seed production is safeguarded. Parasitic wasps are generally thought to have negative effects on the relationship between figs and their pollinators, but our results show that in fact they may help to keep a mutualistic relationship stable in the natural world.”

Lucy Chappell | alfa
Further information:
http://www.reading.ac.uk

Further reports about: EGG develop mutualism outer ovule parasites pollinator stable

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>