Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Curing addiction with cannabis medicines

10.03.2008
Smokers trying to quit in the future could do it with the help of cannabis based medicines, according to research from The University of Nottingham.

Teams of pharmacologists, studying the cannabis-like compounds which exist naturally in our bodies (endocannabinoids), are exploring the potential for medical treatment. This includes treating conditions as diverse as obesity, diabetes, depression and addiction to substances like nicotine.

Scientists have known about endocannabinoids since the mid-1990s. This led to an explosion in the number of researchers looking into the future medical uses of cannabinoids and cannabis compounds.

Dr Steve Alexander, Associate Professor in the School of Biomedical Sciences, focused on a number of these projects in editing the first themed podcast for the British Journal of Pharmacology.

Dr Alexander said: “It is clear that there is very realistic potential for cannabinoids as medicines. Scientists are looking at a range of possible applications.”

One of these researchers is Professor David Kendall, a cellular pharmacologist at the University: “The brain is full of cannabinoid receptors. And so, not surprisingly with diseases like depression and anxiety, there’s a great deal of interest in exploiting these receptors and in doing so, developing anti-depressant compounds.”

Addiction is a real target — researchers like Professor Kendall believe the endocannabinoids could be a crucial link to addictive behaviour: “We know that the endocannabinoid system is intimately involved in reward pathways and drug seeking behaviour. So this tends to indicate that that if the link involving endocannabinoids and the reward pathway, using inhibitors, can be interrupted, it could turn down the drive to seek addictive agents like nicotine.”

Because cannabinoids have also been shown to bring down blood pressure, it is hoped that related compounds can be used in patients with conditions like hypertension.

Dr Michael Randall, a cardiovascular pharmacologist at the University has looked at how endocannabinoids cause blood vessels to relax. “This could have many implications,” Dr Randall said. “The endocannabinoids appear to lower blood pressure under certain conditions; states of shock for example. If the endocannabinoids are of physiological importance, this could have real therapeutic possibilities.”

“In terms of getting better medicines the endocannabinoid system has a lot to offer,” said Dr Alexander. “The range of cannabis-related medicines is currently limited, but by increasing our knowledge in this area we can increase our stock.”

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

Further reports about: Cannabinoid Cannabis Endocannabinoid medicines

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>