Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists determine structure of brain receptor implicated in epilepsy and PMT

10.03.2008
Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have published new research in the journal Molecular Pharmacology identifying the structure of a receptor in the brain implicated in conditions such as epilepsy and pre-menstrual tension. The same receptor has also been reported to be highly sensitive to alcohol.

The University of Cambridge team, in collaboration with colleagues at Aston University and the University of Alberta, have determined the arrangement of the constituent parts of an uncommon but important type of GABA receptor in the brain. GABAA receptors in the central nervous system play important roles in the body's response to gamma-aminobutyric acid (GABA), a chemical used by the brain to control certain functions. By understanding how the receptors' sub-units are arranged, scientists may now be able to develop drugs to block or stimulate them, providing hope for sufferers of a range of conditions.

Different types of GABAA receptor have been shown to play various roles in the body's control of behaviour and development. The Cambridge scientists are the first to determine the structure of a type of GABAA receptor containing the so-called delta sub-unit. This receptor type is found in small numbers in the body but is thought to be disproportionately important in controlling our state of consciousness; it is highly sensitive to anaesthetics, and has been linked to epilepsy and pre-menstrual tension, and to the body's response to alcohol.

The team used an atomic force microscope to detect the receptors. They applied tags to the receptors that bind to different sub-units. These can then be identified with the microscope, which scans a probe over the surface of a sample. By identifying the tags the team could identify where the various sub-units were located. Armed with this information, researchers can now build detailed models of the receptor which can be used to develop drugs to intervene in the signals that it receives.

... more about:
»Epilepsy »conditions »receptor »structure »sub-unit

Dr Mike Edwardson, who led the research team, said: "This type of GABA receptor plays a crucial role in the body's response to a range of stimuli. Scientists think that when there is a problem in the signalling, conditions such as epilepsy and PMT can occur. Now we have identified the detailed structure of the receptor we are in a better position to design drugs that bind to it."

Professor Nigel Brown, BBSRC Director of Science and Technology, commented: "Basic bioscience research has a crucial role to play in understanding conditions that affect the health and quality of life for millions of people. If we learn the detailed mechanisms by which the body functions, medical scientists and the pharmaceutical industry can develop treatments to intervene when it goes wrong."

VIDEO FOOTAGE OF DR MIKE EDWARDSON EXPLAINING THIS RESEARCH IS AVAILABLE FOR MEDIA USE - DOWNLOAD FROM:

http://www.bbsrc.ac.uk/media/releases/2008/080307_brain_epilepsy_pmt.html

| alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Epilepsy conditions receptor structure sub-unit

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>