Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists determine structure of brain receptor implicated in epilepsy and PMT

10.03.2008
Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have published new research in the journal Molecular Pharmacology identifying the structure of a receptor in the brain implicated in conditions such as epilepsy and pre-menstrual tension. The same receptor has also been reported to be highly sensitive to alcohol.

The University of Cambridge team, in collaboration with colleagues at Aston University and the University of Alberta, have determined the arrangement of the constituent parts of an uncommon but important type of GABA receptor in the brain. GABAA receptors in the central nervous system play important roles in the body's response to gamma-aminobutyric acid (GABA), a chemical used by the brain to control certain functions. By understanding how the receptors' sub-units are arranged, scientists may now be able to develop drugs to block or stimulate them, providing hope for sufferers of a range of conditions.

Different types of GABAA receptor have been shown to play various roles in the body's control of behaviour and development. The Cambridge scientists are the first to determine the structure of a type of GABAA receptor containing the so-called delta sub-unit. This receptor type is found in small numbers in the body but is thought to be disproportionately important in controlling our state of consciousness; it is highly sensitive to anaesthetics, and has been linked to epilepsy and pre-menstrual tension, and to the body's response to alcohol.

The team used an atomic force microscope to detect the receptors. They applied tags to the receptors that bind to different sub-units. These can then be identified with the microscope, which scans a probe over the surface of a sample. By identifying the tags the team could identify where the various sub-units were located. Armed with this information, researchers can now build detailed models of the receptor which can be used to develop drugs to intervene in the signals that it receives.

... more about:
»Epilepsy »conditions »receptor »structure »sub-unit

Dr Mike Edwardson, who led the research team, said: "This type of GABA receptor plays a crucial role in the body's response to a range of stimuli. Scientists think that when there is a problem in the signalling, conditions such as epilepsy and PMT can occur. Now we have identified the detailed structure of the receptor we are in a better position to design drugs that bind to it."

Professor Nigel Brown, BBSRC Director of Science and Technology, commented: "Basic bioscience research has a crucial role to play in understanding conditions that affect the health and quality of life for millions of people. If we learn the detailed mechanisms by which the body functions, medical scientists and the pharmaceutical industry can develop treatments to intervene when it goes wrong."

VIDEO FOOTAGE OF DR MIKE EDWARDSON EXPLAINING THIS RESEARCH IS AVAILABLE FOR MEDIA USE - DOWNLOAD FROM:

http://www.bbsrc.ac.uk/media/releases/2008/080307_brain_epilepsy_pmt.html

| alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Epilepsy conditions receptor structure sub-unit

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>