Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique takes a big step in examination of small structures

07.03.2008
A team led by a Purdue University researcher has achieved images of a virus in detail two times greater than had previously been achieved.

Wen Jiang, an assistant professor of biological sciences at Purdue, led a research team that used the emerging technique of single-particle electron cryomicroscopy to capture a three-dimensional image of a virus at a resolution of 4.5 angstroms. Approximately 1 million angstroms would equal the diameter of a human hair.

"This is one of the first projects to refine the technique to the point of near atomic-level resolution," said Jiang, who also is a member of Purdue's structural biology group. "This breaks a threshold and allows us to now see a whole new level of detail in the structure. This is the highest resolution ever achieved for a living organism of this size."

Details of the structure of a virus provide valuable information for development of disease treatments, he said.

"If we understand the system - how the virus particles assemble and how they infect a host cell - it will greatly improve our ability to design a treatment," Jiang said. "Structural biologists perform the basic science and provide information to help those working on the clinical aspects."

A paper detailing the work was published in the Feb. 28 issue of Nature.

Roger Hendrix, a professor of biological sciences at the University of Pittsburgh, said what is learned about viruses can be applied to many other biological systems.

"Understanding the proteins that create the structure of a virus gives us insight into the tiny biological machines found throughout our bodies," he said. "Getting to 4.5 angstrom using this technique is a watershed of sorts because it is the first time we can actually trace the polypeptide chain - the backbone of proteins. Now we can see the tiny gears and levers that allow the proteins to move and interact as they carry out their intricate biological roles."

The imaging technique, called cryo-EM, has the added benefit of maintaining the sample being studied in a state very similar to its natural environment. Other imaging techniques used regularly, such as X-ray crystallography, require the sample be manipulated.

"This method offers a new approach for modeling the structure of proteins in other macromolecular assemblies, such as DNA, at near-native states," Jiang said. "The sample is purified in a solution that is very similar to the environment that would be found in a host cell. It is as if the virus is frozen in glass and it is alive and infectious while we examine it."

In addition to Jiang, Matthew L. Baker, Joanita Jakana and Wah Chiu from Baylor College of Medicine, and Peter R. Weigele and Jonathan King from Massachusetts Institute of Technology worked on the project, which was funded by the National Institutes of Health and the National Science Foundation.

The team obtained a three-dimensional map of the capsid, or protein shell, of the epsilon15 bacteriophage, a virus that infects bacteria and is a member of a family of viruses that are the most abundant life forms on Earth, Jiang said.

Other methods of determining the structure could not be used for this family of virus. None had been successfully crystallized, and the complexity of members of this family had prevented evaluation through the genome sequence alone.

"This demonstration shows that cryo-EM is doable and is a major step in reaching the full potential of this technique," he said. "The goal is to have it reach a 3 to 4 angstrom resolution, which would allow us to clearly see the amino acids that make up a protein."

In electron microscopy, a beam of electrons takes the place of the light beam used in a conventional microscope. The use of electrons instead of light allows the microscope to "see" in much greater detail.

Cryo-EM cools specimens to temperatures well below the freezing point of water. This decreases damage from the electron beam and allows the specimens to be examined for a longer period of time. Longer exposure time allows for sharper, more detailed images.

Researchers using cryo-EM had obtained images at a resolution of 6-9 angstroms but could not differentiate between smaller elements of the structure spaced only 4.5 angstroms apart.

"There are different elements that make up the protein building blocks of the virus," Jiang said. "It is like examining a striped blanket. From a distance, the stripes blur together and the blanket appears to be one solid color. As you get closer you can see the different stripes, and if you use a magnifying glass you can see the strands of string that make up the material. The resolution needs to be smaller than the distance between the strands of thread in order to see two separate strands.

"By being able to zoom in, researchers were able to see components that blurred together at the earlier achieved resolution."

Cryo-EM requires high-end electron microscopes and powerful computing resources. The research team used the Baylor College of Medicine's cryoelectron microscope. It is expected that Purdue will install a state-of-the-art cryoelectron microscope in 2009.

In 2006 Purdue received a $2 million grant from the National Institute of Health to purchase the microscope. It will be installed in Hockmeyer Hall of Structural Biology, expected to open in 2009.

Computer programs are used to extract the signal from the microscope and to combine thousands of two-dimensional images into an accurate three-dimensional image that maps the structure of the virus. This requires use of a large data set and could not have been done without the resources of Purdue's Office of Information Technology, or ItaP, Jiang said.

Jiang used Purdue's Condor program - which links computers including desktop machines and large, powerful research computers - to create the largest distributed computing network at a university.

"ITaP provided us with computational power at the supercomputer scale that was necessary for this work," he said. "Purdue's Condor program allowed us to take advantage of the power of 7,000 computers. This was a critical element to our success."

Jiang plans to continue to refine every step of the process to improve the capabilities of the technique and to examine more medically relevant virus species.

Purdue's structural biology group studies a diverse group of problems, including cellular signaling pathways, RNA catalysis, bioremediation, molecular evolution, viral entry, viral replication and viral pathogenesis. Researchers use a combination of X-ray crystallography, electron cryomicroscopy, NMR spectroscopy, and advanced computational and modeling tools to study these problems.

Writer: Elizabeth K. Gardner, (765) 494-2081, ekgardner@purdue.edu
Source: Wen Jiang, (765) 496-8436, jiang12@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Elizabeth K. Gardner | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: Jiang Purdue' Resolution angstrom endocarditis technique

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>