Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein researchers discover gene mutations linked to longer lifespans

06.03.2008
Mutations in genes governing an important cell-signaling pathway influence human longevity, scientists at the Albert Einstein College of Medicine of Yeshiva University have found. Their research is described in the March 4 issue of the Proceedings of the National Academy of Sciences.

The report is the latest finding in the Einstein researchers’ ongoing search for genetic clues to longevity through their study that by now has recruited more than 450 Ashkenazi (Eastern European) Jews between the ages of 95 and 110. Descended from a small founder group, Ashkenazi Jews are more genetically uniform than other groups, making it easier to spot gene differences that are present. In 2003, this study resulted in the first two “longevity genes” ever identified—findings that have since been validated by other research.

The present study focused on genes involved in the action of insulin-like growth factor (IGF-I), a hormone that in humans is regulated by human growth hormone. Affecting virtually every cell type in the body, IGF-I is crucially important for children’s growth and continues contributing to tissue synthesis into adulthood. The IGF-I cell-signaling pathway is triggered when IGF-I molecules circulating in blood plasma latch onto receptors on the surface of cells, causing a signal to be sent to the cell’s nucleus that may, for example, tell that cell to divide.

Animal research had shown that mutations to genes involved in the IGF-I signaling pathway cause two effects: Affected animals have impaired growth but also longer life spans. So the Einstein scientists reasoned that altered signaling in this pathway might also influence human longevity. To find out, they analyzed IGF-I-related genetic variations in 384 Ashkenazi Jewish centenarians. And since plasma levels of IGF-I do not reflect their levels at a younger age, the researchers also looked at two other groups: the children of these centenarians, and a control group consisting of Ashkenazi Jews the same age as the centenarians’ children but with no family history of longevity.

Remarkably, the female children of the centenarians had IGF-I plasma levels that were 35 percent higher than female controls—perhaps a sign that the body was compensating for a glitch in IGF-I signaling by secreting increased amounts of the hormone. That suspicion was strengthened by two other findings: the daughters of centenarians were 2.5 cm shorter than female controls; and when the researchers analyzed the gene coding for the IGF-I cell-surface receptor molecule to which the IGF-I hormone binds, the receptor genes of centenarians and their daughters were much more likely to have a variety of mutations than were the receptor genes of the controls.

“Our findings suggest that, by interfering with IGF-I signaling, these gene mutations somehow play a role in extending the human life span, as they do in many other organisms,” says Dr. Nir Barzilai, senior author of the study and director of the Institute for Aging Research at Einstein.

Dr. Barzilai notes that a drug that decreases IGF-I action is currently being tested as a cancer treatment and could be useful in delaying aging. “Since the subjects in our study have been exposed to their mutations since conception, it is not clear whether people would need such a therapy throughout life or if it could help people who received it at a later time.”

Karen Gardner | EurekAlert!
Further information:
http://www.aecom.yu.edu

Further reports about: Ashkenazi IGF-I centenarians hormone longevity mutations receptor

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>