Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Einstein researchers discover gene mutations linked to longer lifespans

Mutations in genes governing an important cell-signaling pathway influence human longevity, scientists at the Albert Einstein College of Medicine of Yeshiva University have found. Their research is described in the March 4 issue of the Proceedings of the National Academy of Sciences.

The report is the latest finding in the Einstein researchers’ ongoing search for genetic clues to longevity through their study that by now has recruited more than 450 Ashkenazi (Eastern European) Jews between the ages of 95 and 110. Descended from a small founder group, Ashkenazi Jews are more genetically uniform than other groups, making it easier to spot gene differences that are present. In 2003, this study resulted in the first two “longevity genes” ever identified—findings that have since been validated by other research.

The present study focused on genes involved in the action of insulin-like growth factor (IGF-I), a hormone that in humans is regulated by human growth hormone. Affecting virtually every cell type in the body, IGF-I is crucially important for children’s growth and continues contributing to tissue synthesis into adulthood. The IGF-I cell-signaling pathway is triggered when IGF-I molecules circulating in blood plasma latch onto receptors on the surface of cells, causing a signal to be sent to the cell’s nucleus that may, for example, tell that cell to divide.

Animal research had shown that mutations to genes involved in the IGF-I signaling pathway cause two effects: Affected animals have impaired growth but also longer life spans. So the Einstein scientists reasoned that altered signaling in this pathway might also influence human longevity. To find out, they analyzed IGF-I-related genetic variations in 384 Ashkenazi Jewish centenarians. And since plasma levels of IGF-I do not reflect their levels at a younger age, the researchers also looked at two other groups: the children of these centenarians, and a control group consisting of Ashkenazi Jews the same age as the centenarians’ children but with no family history of longevity.

Remarkably, the female children of the centenarians had IGF-I plasma levels that were 35 percent higher than female controls—perhaps a sign that the body was compensating for a glitch in IGF-I signaling by secreting increased amounts of the hormone. That suspicion was strengthened by two other findings: the daughters of centenarians were 2.5 cm shorter than female controls; and when the researchers analyzed the gene coding for the IGF-I cell-surface receptor molecule to which the IGF-I hormone binds, the receptor genes of centenarians and their daughters were much more likely to have a variety of mutations than were the receptor genes of the controls.

“Our findings suggest that, by interfering with IGF-I signaling, these gene mutations somehow play a role in extending the human life span, as they do in many other organisms,” says Dr. Nir Barzilai, senior author of the study and director of the Institute for Aging Research at Einstein.

Dr. Barzilai notes that a drug that decreases IGF-I action is currently being tested as a cancer treatment and could be useful in delaying aging. “Since the subjects in our study have been exposed to their mutations since conception, it is not clear whether people would need such a therapy throughout life or if it could help people who received it at a later time.”

Karen Gardner | EurekAlert!
Further information:

Further reports about: Ashkenazi IGF-I centenarians hormone longevity mutations receptor

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>