Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leicester scientists seek to disarm TB's 'molecular weapon'

06.03.2008
Scientists at the University of Leicester are claiming a new advance in their fight against the resurgence of TB in Britain.

They have isolated the molecular ‘weapons’ of the bacterium and are now assessing ways to make the bacterium impotent.

Scientists in the University’s Department of Biochemistry are focusing on two proteins in the TB bacterium which, it is thought, allows it to thrive in white blood cells.

They are particularly examining a ‘long arm’ in a molecule of the bacterium which is thought to be used to bind onto white blood cells. The scientists are also seeking to identify which part of the white blood cell is being targeted.

... more about:
»Complex »Molecular »White »bacterium »blood cells »weapon

Dr. Mark Carr, from the Department of Biochemistry said: “If you were to ask most people about TB, they would have most likely told you it was no longer a threat, merely a memory of a Britain with an undeveloped healthcare system.

“But TB is on the rise around the world with the number of new reported cases nearly doubling in the past 25 years. The World Health Organisation reported 8,500 instances in the UK in 2005.

“At the University of Leicester, our aim is to take the molecular ‘weapons’ of TB and isolate them, to understand their function and hopefully find a way to minimise their effects.

“One of the most important of these molecular weapons is known as the ESAT-6/CFP-10 complex. These are two proteins that bind together to become a functional unit, and it is thought that they may be needed to allow the bacteria to thrive inside white blood cells, as happens during the initial infection. Removal of the genes for this complex from the TB genome renders the bacteria unable to cause disease, exposing how important this particular weapon is to the bacteria.

“Similarly, studies of the structure of the protein complex have shown that removal of a ‘long arm’ from the molecule prevents the complex’s ability to bind to the outer surface of human white blood cells. This data has provided us with a potential insight into the important components of this complex.”

Dr. Carr added: “Current work is attempting to identify the exact components of the human white blood cells that this complex is targeting. Once found, this should give us a greater knowledge of the action of these molecular weapons of TB and give us the edge in the war against an ancient, reawakened foe.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

Further reports about: Complex Molecular White bacterium blood cells weapon

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>