Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn scientists find a protein that inhibits Ebola from reaching out to infect neighboring cells

05.03.2008
Scientists at the University of Pennsylvania School of Veterinary Medicine have identified a protein, ISG15, that inhibits the Ebola virus from budding, the process by which viruses escape from cells and spread to infect neighboring cells.

This study shows for the first time how ISG15 slows the spread of Ebola virus budding, an observation that could help explain how ISG15 successfully inhibits other viruses, including HIV-1 and herpes simplex virus type I. The findings, reported in the current issue of the Proceedings of the National Academy of Sciences, offer the promise of future treatments for Ebola outbreaks that now prove fatal for as many as 90 percent of victims.

According to the Penn Vet research team, ISG15 inhibits budding in an indirect way, by blocking the behavior of a particular host cell protein which is used by Ebola and other viruses to efficiently escape from cells. ISG15 specifically inhibits the host protein, Nedd4, used by the viral protein VP40 to escape from cells and allow for virus spread.

“Inhibit the proteins used by a virus to reproduce and you are inhibiting the virus itself,” Ronald Harty, lead author of the study and associate professor in the Department of Pathobiology at Penn Vet, said. “Without host Nedd4, the Ebola virus still buds and attacks, but it doesn’t bud as well. The long-term goal of our research is to understand the interplay between host and virus, with the hope of creating an anti-viral drug or inhibitor, much like how Tamiflu doesn’t cure the flu but slows down the viral process,” Harty said. “The drug would be designed to dampen or slow down viral budding to allow an infected person’s immune system to fight back.”

... more about:
»Ebola »Host »ISG15 »Nedd4 »VP40 »budding »infect »inhibits »spread

The Ebola virus VP40 protein is the key player in the process of virus assembly and release from infected cells. VP40 buds from mammalian cells independent of other viral proteins, and efficient release of VP40 virus-like particles, VLPs, requires interactions with host proteins such as tsg101 and Nedd4, an E3 ubiquitin ligase. Ubiquitin itself is thought to be exploited by Ebola virus to facilitate efficient virus egress.

The study showed that expression of free ISG15, or the ISGylation System, UbE1L and UbcH8, inhibits budding of Ebola virus VP40 VLPs. Addressing the molecular mechanism of this inhibition, the researchers demonstrated that ISG15 interacts with Nedd4 ubiquitin ligase and inhibits ubiquitination of VP40, thus blocking budding of VP40 VLPs. These data provide evidence of antiviral activity of ISG15 against Ebola virus and suggest a mechanism of action involving disruption of Nedd4 function and subsequent ubiquitination of VP40.

This newest study has extended the team’s knowledge of the reproductive process of Ebola and other viruses with similar reproductive mechanisms. Prior research by Harty and his team had shown that a sequence of four amino acids in VP40 was critical to the spread of the Ebola virus. VP40 appeared to be the necessary protein component to begin the viral budding process. The findings allowed researchers to target VP40 as a key to viral reproduction.

Penn researchers performed this research using only the VP40 protein found in the Ebola and other viruses. VP40 is not harmful in vitro, yet forms a virus-like particle, a unique phenomenon that allows for study of viral behavior without the danger associated with the virus.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

Further reports about: Ebola Host ISG15 Nedd4 VP40 budding infect inhibits spread

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>