Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn scientists find a protein that inhibits Ebola from reaching out to infect neighboring cells

05.03.2008
Scientists at the University of Pennsylvania School of Veterinary Medicine have identified a protein, ISG15, that inhibits the Ebola virus from budding, the process by which viruses escape from cells and spread to infect neighboring cells.

This study shows for the first time how ISG15 slows the spread of Ebola virus budding, an observation that could help explain how ISG15 successfully inhibits other viruses, including HIV-1 and herpes simplex virus type I. The findings, reported in the current issue of the Proceedings of the National Academy of Sciences, offer the promise of future treatments for Ebola outbreaks that now prove fatal for as many as 90 percent of victims.

According to the Penn Vet research team, ISG15 inhibits budding in an indirect way, by blocking the behavior of a particular host cell protein which is used by Ebola and other viruses to efficiently escape from cells. ISG15 specifically inhibits the host protein, Nedd4, used by the viral protein VP40 to escape from cells and allow for virus spread.

“Inhibit the proteins used by a virus to reproduce and you are inhibiting the virus itself,” Ronald Harty, lead author of the study and associate professor in the Department of Pathobiology at Penn Vet, said. “Without host Nedd4, the Ebola virus still buds and attacks, but it doesn’t bud as well. The long-term goal of our research is to understand the interplay between host and virus, with the hope of creating an anti-viral drug or inhibitor, much like how Tamiflu doesn’t cure the flu but slows down the viral process,” Harty said. “The drug would be designed to dampen or slow down viral budding to allow an infected person’s immune system to fight back.”

... more about:
»Ebola »Host »ISG15 »Nedd4 »VP40 »budding »infect »inhibits »spread

The Ebola virus VP40 protein is the key player in the process of virus assembly and release from infected cells. VP40 buds from mammalian cells independent of other viral proteins, and efficient release of VP40 virus-like particles, VLPs, requires interactions with host proteins such as tsg101 and Nedd4, an E3 ubiquitin ligase. Ubiquitin itself is thought to be exploited by Ebola virus to facilitate efficient virus egress.

The study showed that expression of free ISG15, or the ISGylation System, UbE1L and UbcH8, inhibits budding of Ebola virus VP40 VLPs. Addressing the molecular mechanism of this inhibition, the researchers demonstrated that ISG15 interacts with Nedd4 ubiquitin ligase and inhibits ubiquitination of VP40, thus blocking budding of VP40 VLPs. These data provide evidence of antiviral activity of ISG15 against Ebola virus and suggest a mechanism of action involving disruption of Nedd4 function and subsequent ubiquitination of VP40.

This newest study has extended the team’s knowledge of the reproductive process of Ebola and other viruses with similar reproductive mechanisms. Prior research by Harty and his team had shown that a sequence of four amino acids in VP40 was critical to the spread of the Ebola virus. VP40 appeared to be the necessary protein component to begin the viral budding process. The findings allowed researchers to target VP40 as a key to viral reproduction.

Penn researchers performed this research using only the VP40 protein found in the Ebola and other viruses. VP40 is not harmful in vitro, yet forms a virus-like particle, a unique phenomenon that allows for study of viral behavior without the danger associated with the virus.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

Further reports about: Ebola Host ISG15 Nedd4 VP40 budding infect inhibits spread

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>