Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn scientists find a protein that inhibits Ebola from reaching out to infect neighboring cells

05.03.2008
Scientists at the University of Pennsylvania School of Veterinary Medicine have identified a protein, ISG15, that inhibits the Ebola virus from budding, the process by which viruses escape from cells and spread to infect neighboring cells.

This study shows for the first time how ISG15 slows the spread of Ebola virus budding, an observation that could help explain how ISG15 successfully inhibits other viruses, including HIV-1 and herpes simplex virus type I. The findings, reported in the current issue of the Proceedings of the National Academy of Sciences, offer the promise of future treatments for Ebola outbreaks that now prove fatal for as many as 90 percent of victims.

According to the Penn Vet research team, ISG15 inhibits budding in an indirect way, by blocking the behavior of a particular host cell protein which is used by Ebola and other viruses to efficiently escape from cells. ISG15 specifically inhibits the host protein, Nedd4, used by the viral protein VP40 to escape from cells and allow for virus spread.

“Inhibit the proteins used by a virus to reproduce and you are inhibiting the virus itself,” Ronald Harty, lead author of the study and associate professor in the Department of Pathobiology at Penn Vet, said. “Without host Nedd4, the Ebola virus still buds and attacks, but it doesn’t bud as well. The long-term goal of our research is to understand the interplay between host and virus, with the hope of creating an anti-viral drug or inhibitor, much like how Tamiflu doesn’t cure the flu but slows down the viral process,” Harty said. “The drug would be designed to dampen or slow down viral budding to allow an infected person’s immune system to fight back.”

... more about:
»Ebola »Host »ISG15 »Nedd4 »VP40 »budding »infect »inhibits »spread

The Ebola virus VP40 protein is the key player in the process of virus assembly and release from infected cells. VP40 buds from mammalian cells independent of other viral proteins, and efficient release of VP40 virus-like particles, VLPs, requires interactions with host proteins such as tsg101 and Nedd4, an E3 ubiquitin ligase. Ubiquitin itself is thought to be exploited by Ebola virus to facilitate efficient virus egress.

The study showed that expression of free ISG15, or the ISGylation System, UbE1L and UbcH8, inhibits budding of Ebola virus VP40 VLPs. Addressing the molecular mechanism of this inhibition, the researchers demonstrated that ISG15 interacts with Nedd4 ubiquitin ligase and inhibits ubiquitination of VP40, thus blocking budding of VP40 VLPs. These data provide evidence of antiviral activity of ISG15 against Ebola virus and suggest a mechanism of action involving disruption of Nedd4 function and subsequent ubiquitination of VP40.

This newest study has extended the team’s knowledge of the reproductive process of Ebola and other viruses with similar reproductive mechanisms. Prior research by Harty and his team had shown that a sequence of four amino acids in VP40 was critical to the spread of the Ebola virus. VP40 appeared to be the necessary protein component to begin the viral budding process. The findings allowed researchers to target VP40 as a key to viral reproduction.

Penn researchers performed this research using only the VP40 protein found in the Ebola and other viruses. VP40 is not harmful in vitro, yet forms a virus-like particle, a unique phenomenon that allows for study of viral behavior without the danger associated with the virus.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

Further reports about: Ebola Host ISG15 Nedd4 VP40 budding infect inhibits spread

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>