Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U of M researchers discover key for converting waste to electricity

Researchers at the University of Minnesota studying bacteria capable of generating electricity have discovered that riboflavin (commonly known as vitamin B-2) is responsible for much of the energy produced by these organisms.

The bacteria, Shewanella, are commonly found in water and soil and are of interest because they can convert simple organic compounds (such as lactic acid) into electricity, according to Daniel Bond and Jeffrey Gralnick, of the University of Minnesota's BioTechnology Institute and department of microbiology, who led the research effort.

"This is very exciting because it solves a fundamental biological puzzle," Bond said. "Scientists have known for years that Shewanella produce electricity. Now we know how they do it."

The discovery means Shewanella can produce more power simply by increased riboflavin levels. Also, the finding opens up multiple possibilities for innovations in renewable energy and environmental clean-up. The research is published in the March 3 issue of the Proceedings of the National Academy of Sciences.

... more about:
»Shewanella »bacteria »produce »riboflavin

The interdisciplinary research team, which included several students, showed that bacteria growing on electrodes naturally produced riboflavin. Because riboflavin was able to carry electrons from the living cells to the electrodes, rates of electricity production increased by 370 percent as riboflavin accumulated.

Scaled-up "microbial fuel cells" using similar bacteria could generate enough electricity to clean up wastewater or power remote sensors on the ocean floor.

"Bacteria could help pay the bills for a wastewater treatment plant," Bond said.

But more ambitious applications, such as electricity for transportation, homes or businesses, will require significant advances in biology and in the cost-effectiveness of fuel cell materials.

Why do these bacteria produce electricity? In nature, bacteria such as Shewanella need to access and dissolve metals such as iron. Having the ability to direct electrons to metals allows them to change their chemistry and availability.

"Bacteria have been changing the chemistry of the environment for billions of years," said Gralnick. "Their ability to make iron soluble is key to metal cycling in the environment and essential to most life on earth."

The process could be reversed to prevent corrosion of iron and other metals on ships. Bond and Gralnick were each recently awarded funding from the U.S. Navy to explore this and other potential applications.

This research was funded by the Initiative for Renewable Energy and the Environment, the National Science Foundation, the National Institutes of Health and Cargill.

The university's BioTechnology Institute is co-sponsored by the College of Biological Sciences and the Institute of Technology.

Patty Mattern | EurekAlert!
Further information:

Further reports about: Shewanella bacteria produce riboflavin

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>