Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers discover key for converting waste to electricity

05.03.2008
Researchers at the University of Minnesota studying bacteria capable of generating electricity have discovered that riboflavin (commonly known as vitamin B-2) is responsible for much of the energy produced by these organisms.

The bacteria, Shewanella, are commonly found in water and soil and are of interest because they can convert simple organic compounds (such as lactic acid) into electricity, according to Daniel Bond and Jeffrey Gralnick, of the University of Minnesota's BioTechnology Institute and department of microbiology, who led the research effort.

"This is very exciting because it solves a fundamental biological puzzle," Bond said. "Scientists have known for years that Shewanella produce electricity. Now we know how they do it."

The discovery means Shewanella can produce more power simply by increased riboflavin levels. Also, the finding opens up multiple possibilities for innovations in renewable energy and environmental clean-up. The research is published in the March 3 issue of the Proceedings of the National Academy of Sciences.

... more about:
»Shewanella »bacteria »produce »riboflavin

The interdisciplinary research team, which included several students, showed that bacteria growing on electrodes naturally produced riboflavin. Because riboflavin was able to carry electrons from the living cells to the electrodes, rates of electricity production increased by 370 percent as riboflavin accumulated.

Scaled-up "microbial fuel cells" using similar bacteria could generate enough electricity to clean up wastewater or power remote sensors on the ocean floor.

"Bacteria could help pay the bills for a wastewater treatment plant," Bond said.

But more ambitious applications, such as electricity for transportation, homes or businesses, will require significant advances in biology and in the cost-effectiveness of fuel cell materials.

Why do these bacteria produce electricity? In nature, bacteria such as Shewanella need to access and dissolve metals such as iron. Having the ability to direct electrons to metals allows them to change their chemistry and availability.

"Bacteria have been changing the chemistry of the environment for billions of years," said Gralnick. "Their ability to make iron soluble is key to metal cycling in the environment and essential to most life on earth."

The process could be reversed to prevent corrosion of iron and other metals on ships. Bond and Gralnick were each recently awarded funding from the U.S. Navy to explore this and other potential applications.

This research was funded by the Initiative for Renewable Energy and the Environment, the National Science Foundation, the National Institutes of Health and Cargill.

The university's BioTechnology Institute is co-sponsored by the College of Biological Sciences and the Institute of Technology.

Patty Mattern | EurekAlert!
Further information:
http://www.umn.edu

Further reports about: Shewanella bacteria produce riboflavin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>