Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses Evolve To Play By Host Rules

05.03.2008
Biologists at the University of Pennsylvania and Harvard University have examined the complete genomes of viruses that infect the bacteria E. coli, P. aeruginosa and L. lactis and have found that many of these viral genomes exhibit codon bias, the tendency to preferentially encode a protein with a particular spelling.

Researchers analyzed patterns of codon usage across 74 bacteriophages using the concept of a "genome landscape," a method of visualizing long-range patterns in a genome sequence.

Their findings extend the translational theory of codon bias to the viral kingdom, demonstrating that the viral genome is selected to obey the preferences of its host.

“The host bacterium is exerting a strong evolutionary pressure on the virus,” Joshua Plotkin, lead author and assistant professor in the Department of Biology at Penn, said. “This happens because a virus must hijack the machinery of its host in order to reproduce. We are seeing that viruses are forced to adopt the particular codon choices preferred by the bacterium they infect.”

... more about:
»BIAS »Codon »Genome »Host »Viral »bacterium

The study found that each bacterium has a preferred way of spelling its genes. And it appears that viruses that infect a bacterium spell their own genes in the same way the bacterium does, obeying the rules of its host and demonstrating co-evolutionary behavior.

“Like a bee and a flower, an example of co-evolution between two large organisms, the same fundamental biological processes operate between two small organisms, as reflected in their genome sequences,” Plotkin said.

Moreover, the team found that the degree of codon bias varies across the viral genome. By comparing the observed genomes to randomly drawn genomes, the team demonstrated that the regions of high codon bias in these viral genomes often coincide with regions encoding structural proteins. Thus, the proteins that a virus needs to produce at high levels utilize the same encoding as its host organism does for highly expressed proteins.

Any protein can be encoded by multiple, synonymous spellings, but organisms typically prefer one spelling over others, a phenomenon known as codon bias. Codon bias is generally understood to result from selection for the synonymous spelling that maximizes the rate and accuracy of protein production.

The study, appearing in the current issue of the journal Public Library of Science Computational Biology, was performed by Plotkin and Grzegorz Kudla of the Department of Biology in the School of Afrts and Sciences at Penn and Julius Lucks and David Nelson of Harvard University.

The study was supported by grants from the Burroughs Wellcome Fund and the National Science Foundation.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu/pennnews/

Further reports about: BIAS Codon Genome Host Viral bacterium

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>