Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Short RNA strand helps exposed skin cells protect body from bacteria, dehydration and even cancer

04.03.2008
Every minute, 30,000 of our outermost skin cells die so that we can live. When they do, new cells migrate from the inner layer of the skin to the surface of it, where they form a tough protective barrier.

In a series of elegant experiments in mice, researchers at Rockefeller University have now discovered a tiny RNA molecule that helps create this barrier. The results not only yield new insight into how skin first evolved, but also suggest how healthy cells can turn cancerous.

Hundreds of these tiny RNA molecules, called microRNAs, are expressed in skin, "But there was something curious about one in particular, microRNA-203," says Rui Yi, a postdoc who works with Elaine Fuchs, head of the Laboratory of Mammalian Cell Biology and Development. "As an embryo develops, the expression of microRNA-203 jumps very quickly over just two days. From being barely detectable at day 13, this microRNA becomes the most abundant expressed in skin," says Yi, whose work will be published as an advance online publication in Nature March 2. MicroRNAs, which were discovered in mammals in 2001, regulate genes outside of the cell's nucleus.

Yi and Fuchs, who is also a Howard Hughes Medical Institute investigator and Rebecca C. Lancefield Professor at Rockefeller, found that during the 13th day of development, mouse skin is primarily composed of undifferentiated stem cells. Two days later, these stem cells exit the inner layer of the skin and begin to differentiate into cells that form the outermost, protective layer. MicroRNA-203's expression skyrockets precisely during this period, suggesting that it plays some key role in the barrier's development.

... more about:
»Layer »MicroRNA »RNA »Tissue »expressed »microRNA-203 »outer »stem cells

In order to figure out its role, Yi and Fuchs needed to pinpoint exactly where microRNA-203 is expressed. Other microRNAs have been found to be specific to heart and muscle tissues; some exist almost exclusively in the brain. However, this microRNA was found only in very specific types of skin -- stratified epithelial tissues, to be exact -- and only in this skin type's outer layers. What's more, this expression pattern is identical to that found in humans, zebrafish, chickens and the like -- in other words, vertebrates that evolved more than 400 million years apart.

"If it has been expressed in this very specific tissue for a long time and across several species, it means that it probably plays an important role there," says Yi. To find out its function, Yi, in one set of experiments, used a genetic technique to precociously express microRNA in the inner layer of the skin, where stem cells proliferate at a fast clip. In a second set of experiments, he blocked microRNA-203 from functioning in the outer layer using an antagomir, a molecule that binds directly to microRNA-203 and shuts down its ability to carry out its function.

In the first set, he found that the stem cells proliferated significantly less than they did when microRNA-203 wasn't expressed, and, as a result, the mice formed very thin skin -- hardly a protective layer at all. The stem cells, the researchers saw, lost their ability to proliferate not because microRNA-203 killed them off but because it suppressed the activity of a molecule called p63, whose job is to keep cells, primarily stem cells, proliferating. In the second set of experiments, Yi found that the cells in the outer layer proliferated significantly more than they did when microRNA-203 was expressed. The reason: because microRNA-203 wasn't available to shut down p63's busy work.

"We found that microRNA-203 acts to stop the translation of the p63 protein," says Fuchs. "The result is a swift transition from proliferating stem cells within the innermost layer of the epidermis and terminally differentiating cells as they exit this layer and move outward to the skin surface."

The findings have intriguing implications for cancer, since p63 is found in excess in cancer cells. "As a next step, we are going to examine whether low expression of microRNA-203 is associated with squamous cell carcinomas," says Fuchs, "and whether by putting back microRNA-203 we can inhibit the growth of these cancer cells."

Thania Benios | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: Layer MicroRNA RNA Tissue expressed microRNA-203 outer stem cells

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>