Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Short RNA strand helps exposed skin cells protect body from bacteria, dehydration and even cancer

04.03.2008
Every minute, 30,000 of our outermost skin cells die so that we can live. When they do, new cells migrate from the inner layer of the skin to the surface of it, where they form a tough protective barrier.

In a series of elegant experiments in mice, researchers at Rockefeller University have now discovered a tiny RNA molecule that helps create this barrier. The results not only yield new insight into how skin first evolved, but also suggest how healthy cells can turn cancerous.

Hundreds of these tiny RNA molecules, called microRNAs, are expressed in skin, "But there was something curious about one in particular, microRNA-203," says Rui Yi, a postdoc who works with Elaine Fuchs, head of the Laboratory of Mammalian Cell Biology and Development. "As an embryo develops, the expression of microRNA-203 jumps very quickly over just two days. From being barely detectable at day 13, this microRNA becomes the most abundant expressed in skin," says Yi, whose work will be published as an advance online publication in Nature March 2. MicroRNAs, which were discovered in mammals in 2001, regulate genes outside of the cell's nucleus.

Yi and Fuchs, who is also a Howard Hughes Medical Institute investigator and Rebecca C. Lancefield Professor at Rockefeller, found that during the 13th day of development, mouse skin is primarily composed of undifferentiated stem cells. Two days later, these stem cells exit the inner layer of the skin and begin to differentiate into cells that form the outermost, protective layer. MicroRNA-203's expression skyrockets precisely during this period, suggesting that it plays some key role in the barrier's development.

... more about:
»Layer »MicroRNA »RNA »Tissue »expressed »microRNA-203 »outer »stem cells

In order to figure out its role, Yi and Fuchs needed to pinpoint exactly where microRNA-203 is expressed. Other microRNAs have been found to be specific to heart and muscle tissues; some exist almost exclusively in the brain. However, this microRNA was found only in very specific types of skin -- stratified epithelial tissues, to be exact -- and only in this skin type's outer layers. What's more, this expression pattern is identical to that found in humans, zebrafish, chickens and the like -- in other words, vertebrates that evolved more than 400 million years apart.

"If it has been expressed in this very specific tissue for a long time and across several species, it means that it probably plays an important role there," says Yi. To find out its function, Yi, in one set of experiments, used a genetic technique to precociously express microRNA in the inner layer of the skin, where stem cells proliferate at a fast clip. In a second set of experiments, he blocked microRNA-203 from functioning in the outer layer using an antagomir, a molecule that binds directly to microRNA-203 and shuts down its ability to carry out its function.

In the first set, he found that the stem cells proliferated significantly less than they did when microRNA-203 wasn't expressed, and, as a result, the mice formed very thin skin -- hardly a protective layer at all. The stem cells, the researchers saw, lost their ability to proliferate not because microRNA-203 killed them off but because it suppressed the activity of a molecule called p63, whose job is to keep cells, primarily stem cells, proliferating. In the second set of experiments, Yi found that the cells in the outer layer proliferated significantly more than they did when microRNA-203 was expressed. The reason: because microRNA-203 wasn't available to shut down p63's busy work.

"We found that microRNA-203 acts to stop the translation of the p63 protein," says Fuchs. "The result is a swift transition from proliferating stem cells within the innermost layer of the epidermis and terminally differentiating cells as they exit this layer and move outward to the skin surface."

The findings have intriguing implications for cancer, since p63 is found in excess in cancer cells. "As a next step, we are going to examine whether low expression of microRNA-203 is associated with squamous cell carcinomas," says Fuchs, "and whether by putting back microRNA-203 we can inhibit the growth of these cancer cells."

Thania Benios | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: Layer MicroRNA RNA Tissue expressed microRNA-203 outer stem cells

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>