Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Simulations Point To Key Molecular Basis Of Cystic Fibrosis

03.03.2008
Researchers from the University of North Carolina at Chapel Hill have identified a key molecular mechanism that may account for the development of cystic fibrosis, which about 1 in 3000 children are born with in the US every year. The findings, published February 29 in the open-access journal PLoS Computational Biology, add new knowledge to understanding the development of this disease and may also point the way to new corrective treatments.

Cystic fibrosis (CF) is a fatal disease caused by a defective gene that produces a misshapen form of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. People with cystic fibrosis do not have enough CFTR for their cells to work normally because their bodies quickly destroy the mutant protein. The deletion of this protein specifically occurs in a major domain of CFTR called NBD1. Earlier experimental studies have shown that the mutant NBD1 has an increased tendency to misfold, resulting in the premature degradation of CFTR.

In CF, the molecular basis of this increased misfolding tendency has remained elusive, said team leader Nikolay Dokholyan.

“Understanding molecular etiology of the disease is a key step to developing pharmaceutical strategies to fight this disease,” Dokholyan said.

... more about:
»CFTR »Mutant »NBD1 »cystic »fibrosis »fold

Using molecular dynamics simulations, the researchers performed extensive simulations of how normal and mutant NBD1 folded. Molecular dynamics simulation is akin to a “virtual experiment” wherein atoms and molecules are allowed to evolve according to known physical laws. Using computers, this virtual experiment allows researchers to view how atoms actually move. These simulations, when applied to the NBD1 protein, showed that the disease-causing mutant exhibits a higher misfolding tendency.

More importantly, by comparing the structures of the normal and the mutant NBD1 domains as they fold, the authors were able to determine critical pairs of amino acid residues that must come together for NBD1 to fold correctly. These interactions are modulators of CFTR folding, and hence, they are potential modulators of CF.

“Computer simulations approximate our understanding of natural phenomena. That our simulations correlated with known experimental studies is remarkable,” Dokholyan said. “More importantly, the molecular details of aberrant NBD1 folding provides guidance for the design of small molecule drugs to correct the most prevalent and pathogenic mutation in CFTR.”

The first author of the study is Adrian Serohijos, a graduate student in the department of Physics and Astronomy at UNC and in the Molecular and Cellular Biophysics Program. Other co-authors in the study include John Riordan, Ph.D., co-discoverer of the CFTR gene and professor of biochemistry and biophysics, and Tamas Hegedus, Ph.D. of the UNC Cystic Fibrosis Research Center.

This study was supported in part by grants from the Cystic Fibrosis Foundation, the National Institutes of Health, and the American Heart Association.

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org

Further reports about: CFTR Mutant NBD1 cystic fibrosis fold

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>