Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do Animals Think Like Autistic Savants?

20.02.2008
When Temple Grandin argued that animals and autistic savants share cognitive similarities in her best-selling book Animals in Translation (2005), the idea gained steam outside the community of cognitive neuroscientists.

Grandin, a professor of animal science whose best-selling books have provided an unprecedented look at the autistic mind, says her autism gives her special insight into the inner workings of the animal mind. She based her proposal on the observation that animals, like autistic humans, sense and respond to stimuli that nonautistic humans usually overlook.

In a new essay published in the open access journal PLoS Biology, Giorgio Vallortigara and his colleagues, argue that, while Grandin’s book “shows extraordinary insight into both autism and animal welfare,” the question of equivalent cognitive abilities between savants and animals “deserves scrutiny from scientists working in animal cognition and comparative neuroscience.”

Vallortigara et al. argue that savant abilities—for example, exceptional skills in music, math, or art—come at a cost in other aspects of processing and, therefore, appear to be unrelated to the extraordinary species-specific adaptations seen in some taxa. Furthermore, the authors argue, rather than having privileged access to lower level sensory information before it is packaged into concepts, as has been argued for savants, animals, like non-autistic humans, process sensory inputs according to rules, and that this manner of processing is a specialized feature of the left hemisphere in humans and nonhuman animals. At the most general level, they argue, “the left hemisphere sets up rules based on experience and the right hemisphere avoids rules in order to detect details and unique features that allow it to decide what is familiar and what is novel. This is true for human and nonhuman animals, likely reflecting ancient evolutionary origins of the underlying brain mechanisms.”

... more about:
»Cognition »Grandin »argue »autistic »savant

Grandin, who responds to the authors’ critique in a special commentary, suggests that “the basic disagreement between the authors and me arises from the concept of details—specifically how details are perceived by humans, who think in language, compared with animals, who think in sensory-based data. Since animals do not have verbal language, they have to store memories as pictures, sounds, or other sensory impressions.” And sensory-based information, she says, is inherently more detailed than word-based memories. “As a person with autism, all my thoughts are in photo-realistic pictures,” she explains. “The main similarity between animal thought and my thought is the lack of verbal language.”

Though Grandin appreciates the authors’ “fascinating overview of the most recent research on animal cognition,” she suggests that “further experiments need to be done with birds to either confirm or disprove Vallortigara et al.’s hypothesis that birds such as the Clark’s nutcracker, which has savant-like memory for food storage, has retained good cognition in other domains. My hypothesis is that birds that have savant-like skills for food storage sites or remembering migration routes may be less flexible in their cognition.” Grandin welcomes the discussion following the publication of her book—we invite readers to join in that discussion by posting their own Reader Response.

Citation: Vallortigara G, Snyder A, Kaplan G, Bateson P, Clayton NS, et al. (2008) Are animals autistic savants? PLoS Biol 6(2): e42. doi:10.1371/journal. pbio.0060042

Andrew Hyde | alfa
Further information:
http://www.plosbiology.org
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0060042

Further reports about: Cognition Grandin argue autistic savant

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>