Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide survey nets key melanoma gene

08.02.2008
One might call it a tale of two melanocytes. Given the same genetic mutation, why does one melanocyte shut down growth and become a relatively benign mole, while another rages out of control and develops into deadly melanoma"

In trying to tease out the answer to this simple question, Howard Hughes Medical Institute (HHMI) researchers have uncovered a protein that stops the growth of melanoma, a cancer that develops from pigment-producing cells in the skin called melanocytes. HHMI investigator Michael Green and colleagues at the University of Massachusetts Medical School reported their identification of the genetic underpinnings of a new way to thwart one of the deadliest forms of cancer in the February 8, 2008, issue of the journal Cell.

Green and his colleagues began by designing experiments that would help them determine what separates melanomas from ordinary moles at the genetic level. Moles, also known as nevi, and melanoma often result from the same genetic mutation, and the biological pathway that differentiates the two had been a mystery. The new study uncovers a relatively unknown protein that regulates the melanocyte’s “decision” to ward off cancer by either entering a programmed hibernation or committing suicide.

According to the American Cancer Society, 60,000 people in the United States developed melanoma in 2007, and more than 8,000 died of the disease. Melanoma is caused by the uncontrolled proliferation of melanocytes, whose pigment, melanin, protects the skin against the sun’s ultraviolet rays. Nevi, which are benign, are also caused by abnormal growth and differentiation of melanocytes.

... more about:
»BRAF »IGFBP7 »Mutation »melanocyte »melanoma »nevi »secreted »senescence

While nevi are, by definition, non-cancerous, more than half the time the same mutation is at fault in melanoma and nevi: a single amino acid change in a protein called BRAF. BRAF is part of a signaling system that is important for cell growth and proliferation. The BRAF mutation found in nevi and melanoma increases the activity of the BRAF protein, prompting cells to multiply abnormally. In some melanocytes with this mutation, the proliferation cannot be stopped, and cancer develops.

But sometimes when the mutated BRAF gene is expressed in melanocytes, those cells go into a state of permanent hibernation via a process known as senescence. These cells form nevi, not melanoma. This, according to Green, indicates that the genetic checks and balances within those cells are working correctly. “The cell has sensed this oncogenic influence—activated BRAF—and that induces an anti-cancer mechanism to throw the cell into this frozen state,” he said. Green added that sometimes cells simply commit suicide instead of senescing.

Cancer results when something blocks this failsafe mechanism, said Green. “While this phenomenon was known, the components and the pathways involved were not,” he said.

Green, his postdoctoral fellow Narendra Wajapeyee, and their colleagues did a genome-wide search for the proteins involved. They used engineered retroviruses to insert short bits of RNA to selectively turn off individual genes in a series of melanocytes. Some of the cells progressed to cancer, while others did not. After testing thousands of genes, they found 17 that were required for activated BRAF to induce either senescence or suicide. Together, Green said, the proteins made by these genes make up the body’s melanoma defense pathway.

Green’s group found that three of those proteins are required for both the senescence and programmed cell death pathways. The identity of one of those proteins, insulin-like growth factor binding protein 7 (IGFBP7), surprised the researchers. Not much was known about IGFBP7, except that it was secreted, said Green. A secreted protein does not stay inside the cell that produces it, but instead is released from the cell and moves through the blood to other cells. Green said that a secreted protein’s role in the pathway caught them off guard, because “we would have thought this process would be purely intracellular.”

Green and his colleagues focused their attention on IGFBP7 because its presence suggested something intriguing: If one otherwise healthy melanocyte begins expressing BRAF, the IGFBP7 it produces can enter cells around it, prompting lots of melanocytes to “switch off,” rather than risking a tumor.

In the experiments reported in Cell, the researchers exposed human melanoma cells in culture to recombinant IGFBP7. The protein had the same genetic code as the human version, but was produced using genetically modified insect cells. The melanoma cells that were treated with IGFBP7 committed suicide-- just as though their anti-cancer mechanism was working correctly.

The researchers also injected the protein into the bloodstream of mice on to which human melanoma tumors had been grafted. IGFBP7 entered the tumor cells and stopped their growth in the mice. “Melanoma cells [caused by BRAF mutations] shut off expression of this key regulator,” said Green. “Because of that, the cells escape from senescence and form a tumor.”

According to Green, the research also answers another controversy in the field: Are nevi dead-ends or are they precursors to melanoma" “If you go in and see a dermatologist, if they see a mole, they will generally… cut it off,” he said. “They don’t want to take the chance that it could be a precursor.”

However, Green thinks his results point in the other direction. Because IGFBP7 is a secreted protein, even if one activated BRAF-containing -- but otherwise healthy -- cell in the nevi stopped producing IGFBP7 and threatened to form a tumor, the IGFBP7 being secreted from the cells around it would kill it. “It’s an extremely powerful anti-cancer mechanism,” said Green.

The team’s findings are important not only from a research standpoint, but also for future clinical treatments, Green noted. Melanoma can be surgically removed if caught early, but in advanced cases there is really no treatment for it. Green said IGFBP7’s ability to target melanoma tumors throughout the body may make it a powerful tool for cancer therapy. “We’re really very excited about the prospects of trying to advance this as a melanoma treatment,” he said.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: BRAF IGFBP7 Mutation melanocyte melanoma nevi secreted senescence

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>