Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thinking too complicated?

05.02.2008
Neuronal activity is far more predictable than has until now been assumed

How sensitive are neuronal networks to external interference? To what extent are neuronal network processes incudung the thinking patterns of the brain predefined? These questions have been investigated by Sven Jahnke, Raoul-Martin Memmesheimer and Marc Timme at the Bernstein Center for Computional Neuroscience and the Max Planck Institute for Dynamics and Self-Organisation. They have found out that, under certain conditions, neuronal networks are more predictable than was previously assumed (Physical Review Letters, Feb. 1st, 2008)

The brain is one of the most complex objects evolution has created - more than 100 billion neurons communicate with one another through a widely branched network. Neurons process information represented as electrical impulses. Each cell computes the signals of the presynaptic cells. When it generates an impulse itself, depends on the result of this calculation. Marc Timme and collaborators have now mathematically analyzed such a system of neuronal signal transmission and have verified their theory by means of computer simulations. As in the brain, the dynamics of neuronal signal transmission in the mathematical model does not follow a recognizable order; the way in which neuronal impulses are transmitted appears to be unforeseeable. But how unpredictable is such a system really?

Researchers call a system "chaotic" if slight differences in the initial states lead to very different outcomes after long times. The behavior of chaotic systems thus cannot be predicted in the long-term. "The beat of a butterfly's wing in the Amazon Jungle can cause a hurricane in Europe", as the mathematician and meteorologist Edward N. Lorenz visualized this effect in the 1960s. In 1996 researchers of the Hebrew University in Israel demonstrated in a theoretical study that the observed irregular neuronal activity of the brain may be explained by chaotic behavior. Thus, the network would develop a very different dynamics, even if only a single neuron transmitted a signal a fraction of a second earlier or later. In the last ten years many neuroscientists assumed that such chaotic behavior generally accounts for the observed irregularities.

... more about:
»Dynamics »Neuronal »Timme »chaotic »irregular
As Timme and colleagues have now uncovered, chaotic activity only arises under certain conditions and may not be a general rule in such networks. "A combination of various new methods has made it possible for us to consider every single impulse of a neuron in a network", Jahnke explains. The researchers could show that, under certain conditions, a neuronal network is astonishingly insensitive to small temporal shifts of neuronal impulses.

"If patterns of neuronal activity are similar enough, they do not develop an entirely different dynamics, as would be expected from a chaotic system. Quite in contrast, they conform to one another in the long-term", Memmesheimer explains. In the brain this could contribute to the highly precise emergence of temporal activity patterns, so that information in such networks can be processed and calculated to a high accuracy.

Although the network appears to be highly irregular according to statistical measures, this is not necessarily an indication of a chaotic system. Rather, it can be predictable over a longer period of time. "We still have to examine more closely the circumstances under which the brain's reaction is predicatble rather that chaotic", Timme adds. In any case, the dynamics of neuronal networks is, even though highly irregular, not always as complicated as previously thought.

Original publication:
Sven Jahnke, Raoul-Martin Memeshimer and Marc Timme (2007). Stable irregular dynamics in complex neural networks. Physical Review Letters 100, 048102. DOI: 10.113/PhysRevLett.100.048102
Contact:
Dr. Marc Timme
Head of the
Network Dynamics Group
Max Planck Institut for Dynamics and Self-Organisation
Bernstein Center for Computational Neuroscience
Bunsenstr. 10
37073 Göttingen
Germany
timme@nld.ds.mpg.de

Katrin Weigmann | idw
Further information:
http://www.nld.ds.mpg.de/~timme
http://www.bernstein-zentren.de/
http://www.bccn-goettingen.de/

Further reports about: Dynamics Neuronal Timme chaotic irregular

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Cells adapt ultra-rapidly to zero gravity

28.02.2017 | Health and Medicine

An Atom Trap for Water Dating

28.02.2017 | Earth Sciences

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>