Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thinking too complicated?

05.02.2008
Neuronal activity is far more predictable than has until now been assumed

How sensitive are neuronal networks to external interference? To what extent are neuronal network processes incudung the thinking patterns of the brain predefined? These questions have been investigated by Sven Jahnke, Raoul-Martin Memmesheimer and Marc Timme at the Bernstein Center for Computional Neuroscience and the Max Planck Institute for Dynamics and Self-Organisation. They have found out that, under certain conditions, neuronal networks are more predictable than was previously assumed (Physical Review Letters, Feb. 1st, 2008)

The brain is one of the most complex objects evolution has created - more than 100 billion neurons communicate with one another through a widely branched network. Neurons process information represented as electrical impulses. Each cell computes the signals of the presynaptic cells. When it generates an impulse itself, depends on the result of this calculation. Marc Timme and collaborators have now mathematically analyzed such a system of neuronal signal transmission and have verified their theory by means of computer simulations. As in the brain, the dynamics of neuronal signal transmission in the mathematical model does not follow a recognizable order; the way in which neuronal impulses are transmitted appears to be unforeseeable. But how unpredictable is such a system really?

Researchers call a system "chaotic" if slight differences in the initial states lead to very different outcomes after long times. The behavior of chaotic systems thus cannot be predicted in the long-term. "The beat of a butterfly's wing in the Amazon Jungle can cause a hurricane in Europe", as the mathematician and meteorologist Edward N. Lorenz visualized this effect in the 1960s. In 1996 researchers of the Hebrew University in Israel demonstrated in a theoretical study that the observed irregular neuronal activity of the brain may be explained by chaotic behavior. Thus, the network would develop a very different dynamics, even if only a single neuron transmitted a signal a fraction of a second earlier or later. In the last ten years many neuroscientists assumed that such chaotic behavior generally accounts for the observed irregularities.

... more about:
»Dynamics »Neuronal »Timme »chaotic »irregular
As Timme and colleagues have now uncovered, chaotic activity only arises under certain conditions and may not be a general rule in such networks. "A combination of various new methods has made it possible for us to consider every single impulse of a neuron in a network", Jahnke explains. The researchers could show that, under certain conditions, a neuronal network is astonishingly insensitive to small temporal shifts of neuronal impulses.

"If patterns of neuronal activity are similar enough, they do not develop an entirely different dynamics, as would be expected from a chaotic system. Quite in contrast, they conform to one another in the long-term", Memmesheimer explains. In the brain this could contribute to the highly precise emergence of temporal activity patterns, so that information in such networks can be processed and calculated to a high accuracy.

Although the network appears to be highly irregular according to statistical measures, this is not necessarily an indication of a chaotic system. Rather, it can be predictable over a longer period of time. "We still have to examine more closely the circumstances under which the brain's reaction is predicatble rather that chaotic", Timme adds. In any case, the dynamics of neuronal networks is, even though highly irregular, not always as complicated as previously thought.

Original publication:
Sven Jahnke, Raoul-Martin Memeshimer and Marc Timme (2007). Stable irregular dynamics in complex neural networks. Physical Review Letters 100, 048102. DOI: 10.113/PhysRevLett.100.048102
Contact:
Dr. Marc Timme
Head of the
Network Dynamics Group
Max Planck Institut for Dynamics and Self-Organisation
Bernstein Center for Computational Neuroscience
Bunsenstr. 10
37073 Göttingen
Germany
timme@nld.ds.mpg.de

Katrin Weigmann | idw
Further information:
http://www.nld.ds.mpg.de/~timme
http://www.bernstein-zentren.de/
http://www.bccn-goettingen.de/

Further reports about: Dynamics Neuronal Timme chaotic irregular

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>