Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thinking too complicated?

05.02.2008
Neuronal activity is far more predictable than has until now been assumed

How sensitive are neuronal networks to external interference? To what extent are neuronal network processes incudung the thinking patterns of the brain predefined? These questions have been investigated by Sven Jahnke, Raoul-Martin Memmesheimer and Marc Timme at the Bernstein Center for Computional Neuroscience and the Max Planck Institute for Dynamics and Self-Organisation. They have found out that, under certain conditions, neuronal networks are more predictable than was previously assumed (Physical Review Letters, Feb. 1st, 2008)

The brain is one of the most complex objects evolution has created - more than 100 billion neurons communicate with one another through a widely branched network. Neurons process information represented as electrical impulses. Each cell computes the signals of the presynaptic cells. When it generates an impulse itself, depends on the result of this calculation. Marc Timme and collaborators have now mathematically analyzed such a system of neuronal signal transmission and have verified their theory by means of computer simulations. As in the brain, the dynamics of neuronal signal transmission in the mathematical model does not follow a recognizable order; the way in which neuronal impulses are transmitted appears to be unforeseeable. But how unpredictable is such a system really?

Researchers call a system "chaotic" if slight differences in the initial states lead to very different outcomes after long times. The behavior of chaotic systems thus cannot be predicted in the long-term. "The beat of a butterfly's wing in the Amazon Jungle can cause a hurricane in Europe", as the mathematician and meteorologist Edward N. Lorenz visualized this effect in the 1960s. In 1996 researchers of the Hebrew University in Israel demonstrated in a theoretical study that the observed irregular neuronal activity of the brain may be explained by chaotic behavior. Thus, the network would develop a very different dynamics, even if only a single neuron transmitted a signal a fraction of a second earlier or later. In the last ten years many neuroscientists assumed that such chaotic behavior generally accounts for the observed irregularities.

... more about:
»Dynamics »Neuronal »Timme »chaotic »irregular
As Timme and colleagues have now uncovered, chaotic activity only arises under certain conditions and may not be a general rule in such networks. "A combination of various new methods has made it possible for us to consider every single impulse of a neuron in a network", Jahnke explains. The researchers could show that, under certain conditions, a neuronal network is astonishingly insensitive to small temporal shifts of neuronal impulses.

"If patterns of neuronal activity are similar enough, they do not develop an entirely different dynamics, as would be expected from a chaotic system. Quite in contrast, they conform to one another in the long-term", Memmesheimer explains. In the brain this could contribute to the highly precise emergence of temporal activity patterns, so that information in such networks can be processed and calculated to a high accuracy.

Although the network appears to be highly irregular according to statistical measures, this is not necessarily an indication of a chaotic system. Rather, it can be predictable over a longer period of time. "We still have to examine more closely the circumstances under which the brain's reaction is predicatble rather that chaotic", Timme adds. In any case, the dynamics of neuronal networks is, even though highly irregular, not always as complicated as previously thought.

Original publication:
Sven Jahnke, Raoul-Martin Memeshimer and Marc Timme (2007). Stable irregular dynamics in complex neural networks. Physical Review Letters 100, 048102. DOI: 10.113/PhysRevLett.100.048102
Contact:
Dr. Marc Timme
Head of the
Network Dynamics Group
Max Planck Institut for Dynamics and Self-Organisation
Bernstein Center for Computational Neuroscience
Bunsenstr. 10
37073 Göttingen
Germany
timme@nld.ds.mpg.de

Katrin Weigmann | idw
Further information:
http://www.nld.ds.mpg.de/~timme
http://www.bernstein-zentren.de/
http://www.bccn-goettingen.de/

Further reports about: Dynamics Neuronal Timme chaotic irregular

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>