Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA is blueprint, contractor and construction worker for new structures

31.01.2008
DNA is the blueprint of all life, giving instruction and function to organisms ranging from simple one-celled bacteria to complex human beings. Now Northwestern University researchers report they have used DNA as the blueprint, contractor and construction worker to build a three-dimensional structure out of gold, a lifeless material.

Using just one kind of nanoparticle (gold) the researchers built two common but very different crystalline structures by merely changing one thing -- the strands of synthesized DNA attached to the tiny gold spheres. A different DNA sequence in the strand resulted in the formation of a different crystal.

The technique, to be published Jan. 31 as the cover story in the journal Nature and reflecting more than a decade of work, is a major and fundamental step toward building functional “designer” materials using programmable self-assembly. This “bottom-up” approach will allow scientists to take inorganic materials and build structures with specific properties for a given application, such as therapeutics, biodiagnostics, optics, electronics or catalysis.

Most gems, such as diamonds, rubies and sapphires, are crystalline inorganic materials. Within each crystal structure, the atoms have precise locations, which give each material its unique properties. Diamond’s renowned hardness and refractive properties are due to its structure -- the precise location of its carbon atoms.

In the Northwestern study, gold nanoparticles take the place of atoms. The novel part of the work is that the researchers use DNA to drive the assembly of the crystal. Changing the DNA strand’s sequence of As, Ts, Gs and Cs changes the blueprint, and thus the shape, of the crystalline structure. The two crystals reported in Nature, both made of gold, have different properties because the particles are arranged differently.

“We are now closer to the dream of learning, as nanoscientists, how to break everything down into fundamental building blocks, which for us are nanoparticles, and reassembling them into whatever structure we want that gives us the properties needed for certain applications,” said Chad A. Mirkin, one of the paper’s senior authors and George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences, professor of medicine and professor of materials science and engineering. In addition to Mirkin, George C. Schatz, Morrison Professor of Chemistry, directed the work.

By changing the type of DNA on the surface of the particles, the Northwestern team can get the particles to arrange differently in space. The structures that finally form are the ones that maximize DNA hybridization. DNA is the stabilizing force, the glue that holds the structure together. “These structures are a new form of matter,” said Mirkin, “that would be difficult, if not impossible, to make any other way.”

He likens the process to building a house. Starting with basic materials such as bricks, wood, siding, stone and shingles, a construction team can build many different types of houses out of the same building blocks. In the Northwestern work, the DNA controls where the building blocks (the gold nanoparticles) are positioned in the final crystal structure, arranging the particles in a functional way. The DNA does all the heavy lifting so the researchers don’t have to.

Mirkin, Schatz and their team just used one building block, gold spheres, but as the method is further developed, a multitude of building blocks of different sizes can be used -- with different composition (gold, silver and fluorescent particles, for example) and different shapes (spheres, rods, cubes and triangles). Controlling the distance between the nanoparticles is also key to the structure’s function.

“Once you get good at this you can build anything you want,” said Mirkin, director of Northwestern’s International Institute for Nanotechnology.

“The rules that govern self-assembly are not known, however,” said Schatz, “and determining how to combine nanoparticles into interesting structures is one of the big challenges of the field.”

The Northwestern researchers started with gold nanoparticles (15 nanometers in diameter) and attached double-stranded DNA to each particle with one of the strands significantly longer than the other. The single-stranded portion of this DNA serves as the “linker DNA,” which seeks out a complementary single strand of DNA attached to another gold nanoparticle. The binding of the two single strands of linker DNA to each other completes the double helix, tightly binding the particles to each other.

Each gold nanoparticle has multiple strands of DNA attached to its surface so the nanoparticle is binding in many directions, resulting in a three-dimensional structure -- a crystal. One sequence of linker DNA, programmed by the researchers, results in one type of crystal structure while a different sequence of linker DNA results in a different structure.

“We even found a case where the same linker could give different structures, depending on the temperatures at which the particles were mixed,” said Schatz.

Using the extremely brilliant X-rays produced by the Advanced Photon Source synchrotron at Argonne National Laboratory in combination with computational simulations, the research team imaged the crystals to determine the exact location of the particles throughout the structure. The final crystals have approximately 1 million nanoparticles.

“It took scientists decades of work to learn how to synthesize DNA,” said Mirkin. “Now we’ve learned how to use the synthesized form outside the body to arrange lifeless matter into things that are useful, which is really quite spectacular.”

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: DNA Mirkin Strand blueprint construction gold nanoparticle nanoparticle

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>