Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA is blueprint, contractor and construction worker for new structures

31.01.2008
DNA is the blueprint of all life, giving instruction and function to organisms ranging from simple one-celled bacteria to complex human beings. Now Northwestern University researchers report they have used DNA as the blueprint, contractor and construction worker to build a three-dimensional structure out of gold, a lifeless material.

Using just one kind of nanoparticle (gold) the researchers built two common but very different crystalline structures by merely changing one thing -- the strands of synthesized DNA attached to the tiny gold spheres. A different DNA sequence in the strand resulted in the formation of a different crystal.

The technique, to be published Jan. 31 as the cover story in the journal Nature and reflecting more than a decade of work, is a major and fundamental step toward building functional “designer” materials using programmable self-assembly. This “bottom-up” approach will allow scientists to take inorganic materials and build structures with specific properties for a given application, such as therapeutics, biodiagnostics, optics, electronics or catalysis.

Most gems, such as diamonds, rubies and sapphires, are crystalline inorganic materials. Within each crystal structure, the atoms have precise locations, which give each material its unique properties. Diamond’s renowned hardness and refractive properties are due to its structure -- the precise location of its carbon atoms.

In the Northwestern study, gold nanoparticles take the place of atoms. The novel part of the work is that the researchers use DNA to drive the assembly of the crystal. Changing the DNA strand’s sequence of As, Ts, Gs and Cs changes the blueprint, and thus the shape, of the crystalline structure. The two crystals reported in Nature, both made of gold, have different properties because the particles are arranged differently.

“We are now closer to the dream of learning, as nanoscientists, how to break everything down into fundamental building blocks, which for us are nanoparticles, and reassembling them into whatever structure we want that gives us the properties needed for certain applications,” said Chad A. Mirkin, one of the paper’s senior authors and George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences, professor of medicine and professor of materials science and engineering. In addition to Mirkin, George C. Schatz, Morrison Professor of Chemistry, directed the work.

By changing the type of DNA on the surface of the particles, the Northwestern team can get the particles to arrange differently in space. The structures that finally form are the ones that maximize DNA hybridization. DNA is the stabilizing force, the glue that holds the structure together. “These structures are a new form of matter,” said Mirkin, “that would be difficult, if not impossible, to make any other way.”

He likens the process to building a house. Starting with basic materials such as bricks, wood, siding, stone and shingles, a construction team can build many different types of houses out of the same building blocks. In the Northwestern work, the DNA controls where the building blocks (the gold nanoparticles) are positioned in the final crystal structure, arranging the particles in a functional way. The DNA does all the heavy lifting so the researchers don’t have to.

Mirkin, Schatz and their team just used one building block, gold spheres, but as the method is further developed, a multitude of building blocks of different sizes can be used -- with different composition (gold, silver and fluorescent particles, for example) and different shapes (spheres, rods, cubes and triangles). Controlling the distance between the nanoparticles is also key to the structure’s function.

“Once you get good at this you can build anything you want,” said Mirkin, director of Northwestern’s International Institute for Nanotechnology.

“The rules that govern self-assembly are not known, however,” said Schatz, “and determining how to combine nanoparticles into interesting structures is one of the big challenges of the field.”

The Northwestern researchers started with gold nanoparticles (15 nanometers in diameter) and attached double-stranded DNA to each particle with one of the strands significantly longer than the other. The single-stranded portion of this DNA serves as the “linker DNA,” which seeks out a complementary single strand of DNA attached to another gold nanoparticle. The binding of the two single strands of linker DNA to each other completes the double helix, tightly binding the particles to each other.

Each gold nanoparticle has multiple strands of DNA attached to its surface so the nanoparticle is binding in many directions, resulting in a three-dimensional structure -- a crystal. One sequence of linker DNA, programmed by the researchers, results in one type of crystal structure while a different sequence of linker DNA results in a different structure.

“We even found a case where the same linker could give different structures, depending on the temperatures at which the particles were mixed,” said Schatz.

Using the extremely brilliant X-rays produced by the Advanced Photon Source synchrotron at Argonne National Laboratory in combination with computational simulations, the research team imaged the crystals to determine the exact location of the particles throughout the structure. The final crystals have approximately 1 million nanoparticles.

“It took scientists decades of work to learn how to synthesize DNA,” said Mirkin. “Now we’ve learned how to use the synthesized form outside the body to arrange lifeless matter into things that are useful, which is really quite spectacular.”

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: DNA Mirkin Strand blueprint construction gold nanoparticle nanoparticle

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>